Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 484]
Дан остроугольный треугольник ABC. С помощью циркуля и линейки
постройте на его сторонах AB и BC соответственно точки X и Y, для которых
BX = XY = YC.
Петя вырезал из пластмассы неравносторонний треугольник. Покажите, каким образом можно, пользуясь только этим инструментом как шаблоном, построить биссектрису какого-нибудь угла треугольника, равного вырезанному.
|
|
Сложность: 3+ Классы: 9,10
|
В треугольнике провели высоту из одной вершины, биссектрису из другой и медиану из третьей, отметили точки их попарного пересечения, а затем всё, кроме этих отмеченных точек, стерли (три отмеченные точки различны, кроме того, известно, какая является чьим пересечением). Восстановите треугольник.
Восстановите треугольник ABC по прямым lb и lc, содержащим биссектрисы углов B и C, и основанию биссектрисы угла A – точке L1.
|
|
Сложность: 3+ Классы: 8,9,10
|
Пусть AP и BQ – высоты данного остроугольного треугольника ABC. Постройте циркулем и линейкой на стороне AB точку M так, чтобы
∠AQM = ∠BPM.
Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 484]