Страница:
<< 155 156 157 158
159 160 161 >> [Всего задач: 1275]
На сетке из равносторонних треугольников построен угол ACB (см. рисунок). Найдите его величину.
|
|
Сложность: 3+ Классы: 9,10,11
|
Внутри параллелограмма ABCD выбрана точка Р так, что ∠АРВ + ∠СРD = 180°. Докажите, что ∠РВC = ∠РDC.
|
|
Сложность: 3+ Классы: 10,11
|
Около единичного квадрата ABCD описана окружность, на которой выбрана точка М.
Какое наибольшее значение может принимать произведение MA·MB·MC·MD?
|
|
Сложность: 3+ Классы: 8,9,10
|
Окружность с центром O проходит через концы гипотенузы прямоугольного треугольника и пересекает его катеты в точках M и K.
Докажите, что расстояние от точки O до прямой MK равно половине гипотенузы.
|
|
Сложность: 3+ Классы: 7,8,9
|
Восемь одинаковых шаров положили в коробку так, как показано на рисунке. Докажите, что центры трёх верхних шаров лежат на одной прямой.
Страница:
<< 155 156 157 158
159 160 161 >> [Всего задач: 1275]