Страница:
<< 30 31 32 33
34 35 36 >> [Всего задач: 181]
В треугольнике ABC на основании AC взяты точки P и Q так, что AP < AQ. Прямые BP и BQ делят медиану AM на три равные части. Известно, что PQ = 3.
Найдите AC.
|
|
Сложность: 4- Классы: 9,10,11
|
В треугольнике АВС точки М и N – середины сторон AC и ВС соответственно. Известно, что точка пересечения медиан треугольника AMN является точкой пересечения высот треугольника АВС. Найдите угол АВС.
В треугольнике ABC точки М и N – середины сторон АС и АВ соответственно. На медиане ВМ выбрана точка Р, не лежащая на CN. Оказалось, что
PC = 2PN. Докажите, что АР = ВС.
|
|
Сложность: 4 Классы: 8,9,10
|
В треугольнике ABC отмечены середины сторон AC и BC – точки M и N соответственно. Угол MAN равен 15°, а угол BAN равен 45°.
Найдите угол ABM.
|
|
Сложность: 4 Классы: 8,9,10,11
|
В треугольнике ABC AB = BC, ∠B = 20°. Точка M на основании AC такова, что AM : MC = 1 : 2, точка H – проекция C на BM. Найдите угол AHB.
Страница:
<< 30 31 32 33
34 35 36 >> [Всего задач: 181]