ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На полке стоит 12 книг. Сколькими способами можно выбрать из них пять книг, никакие две из которых не стоят рядом? Докажите, что диаметр, проходящий через середину хорды, не являющейся диаметром, перпендикулярен этой хорде. Натуральное число умножили последовательно на каждую из его цифр. Получилось 1995. Найдите исходное число. Общество из n членов выбирает из своего состава одного представителя. Кусок сыра надо разрезать на части с соблюдением таких правил: |
Страница: << 166 167 168 169 170 171 172 >> [Всего задач: 1282]
Найдите геометрическое место середин всех хорд, проходящих через данную точку окружности.
Докажите, что если в четырехугольнике два противоположные угла тупые, то диагональ, соединяющая вершины этих углов, меньше другой диагонали.
Из точки A, расположенной вне окружности, проведены две
касательные AM и AN (M и N — точки касания) и секущая,
пересекающая окружность в точках P и Q. Пусть L — середина PQ.
Докажите, что
Две окружности пересекаются в точках A и B. Через точку A проведены диаметры AC и AD этих окружностей. Найдите модуль разности отрезков BC и BD, если расстояние между центрами окружностей равно a, а центры окружностей лежат по одну сторону от общей хорды AB.
В правильном пятиугольнике $ABCDE$ отмечена точка $F$ – середина $CD$. Серединный перпендикуляр к $AF$ пересекает $CE$ в точке $H$. Докажите, что прямая $AH$ перпендикулярна прямой $CE$.
Страница: << 166 167 168 169 170 171 172 >> [Всего задач: 1282]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке