ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 563]      



Задача 65377

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 10,11

Докажите, что всякий треугольник площади 1 можно накрыть равнобедренным треугольником площади менее  .

Прислать комментарий     Решение

Задача 65577

Темы:   [ Наглядная геометрия ]
[ Симметрия помогает решить задачу ]
[ Разные задачи на разрезания ]
Сложность: 4-
Классы: 8,9,10

Клетчатый бумажный прямоугольник 10×12 согнули несколько раз по линиям клеток так, что получился квадратик 1×1. Сколько частей могло получиться после того, как этот квадратик разрезали по отрезку, соединяющему
  a) середины двух его противоположных сторон;
  б) середины двух его соседних сторон?

Прислать комментарий     Решение

Задача 65678

Темы:   [ Правильный (равносторонний) треугольник ]
[ Свойства симметрий и осей симметрии ]
[ Вписанный угол равен половине центрального ]
Сложность: 4-
Классы: 8,9,10,11

Внутри выпуклого четырехугольника A1A2B2B1 нашлась такая точка C, что треугольники CA1A2 и CB2B1 – правильные. Точки C1 и C2 симметричны точке C относительно прямых A2B2 и A1B1 соответственно. Докажите, что треугольники A1B1C1 и A2B2C2 подобны.

Прислать комментарий     Решение

Задача 66120

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Композиции симметрий ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10,11

В треугольнике ABC c углом A, равным 45°, проведена медиана AM. Прямая b симметрична прямой AM относительно высоты BB1, а прямая c симметрична прямой AM относительно высоты CC1. Прямые b и c пересеклись в точке X. Докажите, что  AX = BC.

Прислать комментарий     Решение

Задача 67128

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Симметрия помогает решить задачу ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4-
Классы: 8,9,10,11

Прямая пересекает отрезок $AB$ в точке $C$. Какое максимальное число точек $X$ может найтись на этой прямой так, чтобы один из углов $AXC$ и $BXC$ был в два раза больше другого?
Прислать комментарий     Решение


Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 563]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .