Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 484]
|
|
Сложность: 3+ Классы: 8,9,10
|
В треугольнике ABC на сторонах AC, BC и AB отметили точки D, E и F соответственно, так, что AD = AB, EC = DC, BF = BE. После этого стёрли всё, кроме точек E, F и D. Восстановите треугольник ABC.
Восстановите треугольник ABC по вершине B, центру тяжести и точке пересечения L симедианы, проведённой из вершины B, с описанной окружностью.
|
|
Сложность: 3+ Классы: 9,10,11
|
Дан отрезок длины Можно ли построить циркулем и линейкой (на которой нет делений) отрезок длины 1?
|
|
Сложность: 3+ Классы: 9,10,11
|
В узлах сетки клетчатого прямоугольника $4 \times 5$ расположены $30$ лампочек, изначально все они погашены. За ход разрешается провести любую прямую, не задевающую лампочек (размерами лампочек следует пренебречь, считая их точками), такую, что с какой-то одной стороны от нее ни одна лампочка не горит, и зажечь все лампочки по эту сторону от прямой. Каждым ходом нужно зажигать хотя бы одну лампочку. Можно ли зажечь все лампочки ровно за четыре хода?
|
|
Сложность: 3+ Классы: 9,10,11
|
В прямоугольной системе координат (с одинаковым масштабом по осям $x$ и $y$) нарисовали график функции $y = f(x)$. Затем ось ординат и все отметки на оси абсцисс стёрли. Предложите способ, как с помощью карандаша, циркуля и линейки восстановить ось ординат, если
а) $f(x) = 3^x$;
б) $f(x)$ = logax, где $a$ > 1 – неизвестное число.
Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 484]