Страница:
<< 65 66 67 68
69 70 71 >> [Всего задач: 829]
|
|
Сложность: 3+ Классы: 7,8,9
|
Восемь одинаковых шаров положили в коробку так, как показано на рисунке. Докажите, что центры трёх верхних шаров лежат на одной прямой.
В остроугольном треугольнике ABC AH1, BH2 – высоты, D – проекция H1 на AC, E – проекция D на AB, F – точка пересечения ED и AH1.
Докажите, что H2F || BC.
В четырёхугольнике ABCD ∠B = ∠D = 90° и AC = BC + DC. Точка P на луче BD такова, что BP = AD.
Докажите, что прямая CP параллельна биссектрисе угла ABD.
|
|
Сложность: 3+ Классы: 9,10,11
|
Четырёхугольник ABCD – вписанный, AB = AD. На стороне BC взята точка M, а на стороне CD – точка N так, что угол MAN равен половине угла BAD.
Докажите, что MN = BM + ND.
В треугольнике АВС АС = 8, ВС = 5. Прямая, параллельная биссектрисе внешнего угла С, проходит через середину стороны АВ и точку Е на стороне АС. Найдите АЕ.
Страница:
<< 65 66 67 68
69 70 71 >> [Всего задач: 829]