Страница:
<< 61 62 63 64
65 66 67 >> [Всего задач: 401]
|
|
Сложность: 4- Классы: 9,10
|
В треугольнике ABC провели чевианы AA', BB' и CC', которые пересекаются в точке P. Описанная окружность треугольника PA'B' пересекает прямые AC и BC в точках M и N соответственно, а описанные окружности треугольников PC'B' и PA'C' повторно пересекают AC и BC соответственно в точках K и L. Проведём через середины отрезков MN и KL прямую c. Прямые a и b определяются аналогично. Докажите, что прямые a, b и c пересекаются в одной точке.
|
|
Сложность: 4- Классы: 9,10,11
|
Дан выпуклый четырёхугольник ABCD. Пусть ωA, ωB, ωC, ωD – описанные окружности треугольников BCD, ACD, ABD, ABC соответственно. Обозначим через XA произведение степени точки A относительно ωA на площадь треугольника BCD. Аналогично определим XB, XC, XD. Докажите, что XA + XB + XC + XD = 0.
|
|
Сложность: 4- Классы: 9,10,11
|
В остроугольном треугольнике ABC проведены высоты BB', CC'. Через A и C' проведены две окружности, касающиеся BC в точках P и Q.
Докажите, что точки A, B', P, Q лежат на одной окружности.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Дан вписанный четырёхугольник $ABCD$. Пусть $M_{ac}$ – середина диагонали $AC$; $H_d$, $H_b$ – ортоцентры треугольников $ABC$, $ADC$ соответственно; $P_d$, $P_b$ – проекции $H_d$ и $H_b$ на $BM_{ac}$ и $DM_{ac}$ соответственно.
Аналогично определим $P_a$, $P_c$ для диагонали $BD$. Докажите, что $P_a$, $P_b$, $P_c$, $P_d$ лежат на одной окружности.
|
|
Сложность: 4- Классы: 7,8,9
|
В правильном 25-угольнике проведены все диагонали. Докажите, что нет девяти диагоналей, проходящих через одну внутреннюю точку 25-угольника.
Страница:
<< 61 62 63 64
65 66 67 >> [Всего задач: 401]