Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 98]
|
|
Сложность: 6 Классы: 9,10,11
|
Докажите, что если у выпуклого многоугольника все углы равны, то по крайней мере у двух его сторон
длины не превосходят длин соседних с ними сторон.
|
|
Сложность: 8+ Классы: 9,10,11
|
Медианы треугольника
ABC разрезают его на 6 треугольников. Докажите, что
центры описанных окружностей этих треугольников лежат на одной окружности.
Углы треугольника ABC удовлетворяют соотношению sin²A + sin²B + sin²C = 1.
Докажите, что его описанная окружность и окружность девяти точек пересекаются под прямым углом.
Докажите, что сумма расстояний от произвольной точки X до вершин правильного n-угольника будет наименьшей, если X – центр n-угольника.
Выпуклый шестиугольник A1A2...A6 описан около окружности ω радиуса 1. Рассмотрим три отрезка, соединяющие середины противоположных сторон шестиугольника. Для какого наибольшего r можно утверждать, что хотя бы один из этих отрезков не короче r?
Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 98]