Страница:
<< 69 70 71 72
73 74 75 >> [Всего задач: 499]
|
|
Сложность: 3+ Классы: 9,10
|
Дан прямоугольный треугольник ABC с прямым углом C. Пусть BK – биссектриса этого треугольника. Описанная окружность треугольника AKB пересекает вторично сторону BC в точке L. Докажите, что CB + CL = AB.
|
|
Сложность: 3+ Классы: 9,10
|
Квадрат ABCD и равнобедренный прямоугольный треугольник AEF (∠AEF = 90°) расположены так, что точка E
лежит на отрезке BC (см. рисунок). Найдите угол DCF.
В четырёхугольнике ABCD ∠B = ∠D = 90° и AC = BC + DC. Точка P на луче BD такова, что BP = AD.
Докажите, что прямая CP параллельна биссектрисе угла ABD.
|
|
Сложность: 3+ Классы: 8,9,10
|
Дан описанный четырёхугольник. Точки касания его вписанной окружности со сторонами последовательно соединены отрезками. В получившиеся треугольники вписаны окружности. Докажите, что диагонали четырёхугольника с вершинами в центрах этих окружностей взаимно перпендикулярны.
|
|
Сложность: 3+ Классы: 8,9,10
|
Диагонали параллелограмма ABCD пересекаются в точке O. Касательная, проведённая к описанной окружности треугольника BOC в точке O, пересекает луч CB в точке F. Описанная окружность треугольника FOD повторно пересекает прямую BC в точке G. Докажите, что AG = AB.
Страница:
<< 69 70 71 72
73 74 75 >> [Всего задач: 499]