|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В прямоугольном треугольнике ABC точка C0 – середина гипотенузы AB, AA1, BB1 – биссектрисы, I – центр вписанной окружности. В центре квадрата сидит заяц, а в каждом из четырёх углов по одному волку. Может ли заяц выбежать из квадрата, если волки могут бегать только по сторонам квадрата с максимальной скоростью в 1,4 раза большей, чем максимальная скорость зайца? На продолжении наибольшей стороны AC треугольника ABC отложен отрезок |CD|=|BC| . Доказать, что Имеется кусок цепи из 150 звеньев, каждое из которых весит 1 г. Какое наименьшее число звеньев надо расковать, чтобы из образовавшихся частей можно было составить все веса в 1 г, 2 г, 3 г, ..., 150 г (раскованное звено весит тоже 1 г)? |
Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 277]
На доске написано выражение
Натуральные числа a, b, c, d попарно взаимно просты и удовлетворяют равенству ab + cd = ac – 10bd.
На доске написано число 1. Если на доске написано число а, его можно заменить любым числом вида a + d, где d взаимно просто с а и 10 ≤ d ≤ 20.
Известно, что клетчатый квадрат можно разрезать на n одинаковых фигурок из k клеток.
Сто натуральных чисел образуют возрастающую арифметическую прогрессию. Возможно ли, что каждые два из этих чисел взаимно просты?
Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 277] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|