Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 84]
|
|
Сложность: 4 Классы: 8,9,10,11
|
Даны две окружности $\omega_1$ и $\omega_2$, пересекающиеся в точке $A$, и прямая $a$. Пусть $BC$ – произвольная хорда окружности $\omega_2$, параллельная $a$, а $E$ и $F$ – вторые точки пересечения прямых $AB$ и $AC$ с $\omega_1$. Найдите геометрическое место точек пересечения прямых $BC$ и $EF$.
|
|
Сложность: 4 Классы: 10,11
|
В плоскости даны две прямые. Найти геометрическое место точек, разность
расстояний которых от этих прямых равна заданному отрезку.
|
|
Сложность: 4 Классы: 10,11
|
Прямоугольный треугольник
ABC движется по плоскости так, что его вершины
B и
C скользят по сторонам данного прямого угла. Доказать, что множеством
точек
A является отрезок и найти его длину.
Найдите геометрическое место центров прямоугольников, вписанных
в треугольник
ABC так, что одна сторона прямоугольника лежит
на наибольшей стороне
AB , а концы противоположной стороны –
на сторонах
AC и
BC .
В выпуклом четырёхугольнике сумма расстояний от
любой точки внутри четырёхугольника до четырёх прямых,
на которых лежат стороны четырёхугольника, постоянна.
Докажите, что этот четырёхугольник — параллелограмм.
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 84]