Страница:
<< 84 85 86 87
88 89 90 >> [Всего задач: 694]
|
|
Сложность: 3+ Классы: 10,11
|
В пространстве расположено
n отрезков, никакие три из которых не параллельны
одной плоскости. Для любых двух отрезков прямая, соединяющая их середины,
перпендикулярна обоим отрезкам. При каком наибольшем
n это возможно?
Углы, образованные сторонами правильного треугольника с некоторой плоскостью,
равны α, β и γ. Доказать, что одно из чисел sin α,
sin β, sin γ равно сумме двух других.
|
|
Сложность: 3+ Классы: 9,10
|
Дан тетраэдр ABCD. Точка X выбрана вне тетраэдра так, что отрезок XD пересекает грань ABC во внутренней точке. Обозначим через A', B', C' проекции точки D на плоскости XBC, XCA, XAB соответственно. Докажите, что A'B' + B'C' + C'A' < DA + DB + DC.
|
|
Сложность: 3+ Классы: 10,11
|
В прямом параллелепипеде
ABCDA1B1C1D1 с основаниями ABCD и
A1B1C1D1 известно, что AB = 29, AD = 36, BD = 25,
AA1 = 48. Найдите
площадь сечения
AB1C1D.
|
|
Сложность: 4- Классы: 10,11
|
На скрещивающихся прямых
l и
m взяты отрезки
AB и
CD
соответственно. Докажите, что объём пирамиды
ABCD не зависит от
положения отрезков
AB и
CD на этих прямых. Найдите этот объём, если
AB = a ,
CD = b , а угол и расстояние между прямыми
l и
m равны
соответственно
α и
c .
Страница:
<< 84 85 86 87
88 89 90 >> [Всего задач: 694]