Страница:
<< 56 57 58 59
60 61 62 >> [Всего задач: 402]
|
|
Сложность: 3+ Классы: 9,10,11
|
Прямая, проходящая через центр I вписанной окружности треугольника ABC, перпендикулярна AI и пересекает стороны AB и AC в точках C' и B' соответственно. В треугольниках BC'I и CB'I провели высоты C'C1 и B'B1 соответственно. Докажите, что середина отрезка B1C1 лежит на прямой, проходящей через точку I и перпендикулярной BC.
|
|
Сложность: 3+ Классы: 7,8,9
|
На медиане AM треугольника ABC нашлась такая точка K, что AK = BM. Кроме того, ∠AMC = 60°.
Докажите, что AC = BK.
Дана трапеция ABCD с основаниями AD и BC, в которой AB = BD. Пусть M – середина стороны DС. Докажите, что ∠MBC = ∠BCA.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
На диагонали $AC$ ромба $ABCD$ построен параллелограмм $APQC$ так, что точка $B$ лежит внутри него, а сторона $AP$ равна стороне ромба.
Докажите, что $B$ – точка пересечения высот треугольника $DPQ$.
Каждая диагональ выпуклого пятиугольника параллельна одной из его сторон.
Доказать, что отношение каждой диагонали к соответствующей стороне равно
Страница:
<< 56 57 58 59
60 61 62 >> [Всего задач: 402]