ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Каждая из шести окружностей касается четырех из оставшихся пяти (рис.). Докажите, что для любой пары несоприкасающихся окружностей (из этих шести) их радиусы и расстояние между центрами связаны соотношением d2 = r12 + r22±6r1r2 (к плюск — если окружности не лежат одна внутри другой, к минуск — в противном случае).


Вниз   Решение


На высотах $AA_0$, $BB_0$, $CC_0$ остроугольного неравностороннего треугольника $ABC$ отметили соответственно точки $A_1, B_1, C_1$ так, что  $AA_1 = BB_1 = CC_1 = R$,  где $R$ – радиус описанной окружности треугольника $ABC$. Докажите, что центр описанной окружности треугольника $A_1B_1C_1$ совпадает с центром вписанной окружности треугольника $ABC$.

ВверхВниз   Решение


Один фермер сварил сыр в виде неправильной пятиугольной призмы, а другой — в виде правильной четырёхугольной пирамиды, высота которой в два раза меньше стороны основания. Ночью мыши отъели от всех вершин этих многогранников все частицы сыра, которые находились на расстоянии не больше 1 см от соответствующей вершины. У съеденных кусков сыра не было общих частиц. Какой из фермеров понёс больший ущерб и во сколько раз его ущерб больше?

ВверхВниз   Решение


Сколько плоскостей симметрии может иметь треугольная пирамида?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 133]      



Задача 86954

Темы:   [ Призма (прочее) ]
[ Построения на проекционном чертеже ]
Сложность: 3
Классы: 10,11

В призме ABCA1B1C1 медианы оснований ABC и A1B1C1 пересекаются соответственно в точках O и O1 . Через середину отрезка OO1 проведена прямая, параллельная прямой CA1 . Найдите длину отрезка этой прямой, лежащего внутри призмы, если CA1 = a .
Прислать комментарий     Решение


Задача 87253

Темы:   [ Правильная призма ]
[ Двугранный угол ]
Сложность: 3
Классы: 8,9

Найдите объём правильной четырёхугольной призмы, если её диагональ образует с плоскостью боковой грани угол 30o , а сторона основания равна a .
Прислать комментарий     Решение


Задача 87263

Темы:   [ Правильная призма ]
[ Объем призмы ]
Сложность: 3
Классы: 8,9

Наибольшая диагональ правильной шестиугольной призмы равна d и составляет с боковым ребром призмы угол 30o . Найдите объём призмы.
Прислать комментарий     Решение


Задача 87272

Темы:   [ Призма (прочее) ]
[ Круглые тела (прочее) ]
Сложность: 3
Классы: 8,9

Основание призмы ABCA1B1C1 – равносторонний треугольник ABC со стороной a . Ортогональная проекция вершины A1 совпадает с центром основания ABC , а боковое ребро образует с плоскостью основания угол 60o . Найдите боковую поверхность призмы.
Прислать комментарий     Решение


Задача 87286

Темы:   [ Правильная призма ]
[ Теорема о трех перпендикулярах ]
[ Объем призмы ]
Сложность: 3
Классы: 8,9

В правильной треугольной призме плоскость, проходящая через сторону одного основания и противоположную ей вершину другого основания, образует с плоскостью основания угол, равный 45o . Площадь сечения равна S . Найдите объём призмы.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 133]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .