Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Докажите, что центр описанной окружности прямоугольного треугольника совпадает с серединой гипотенузы.

Вниз   Решение


Замените буквы в слове ТРАНСПОРТИРОВКА цифрами (разным буквам соответствуют разные цифры, а одинаковым одинаковые) так, чтобы выполнялось неравенство  Т > Р > А > Н < С < П < О < Р < Т > И > Р > О < В < К < А.

ВверхВниз   Решение


Автор: Mudgal A.

Диагонали трапеции ABCD перпендикулярны. Точка M – середина боковой стороны AB, точка N симметрична центру описанной окружности треугольника ABD относительно прямой AD. Докажите, что ∠CMN = 90°.

ВверхВниз   Решение


Пусть m и n – целые числа. Докажите, что  mn(m + n)  – чётное число.

ВверхВниз   Решение


Докажите, что если α, β, γ и α1, β1, γ1 – углы двух треугольников, то   cos α1/sin α + cos β1/sin β + cos γ1/sin γ ≤ ctg α + ctg β + ctg γ.

ВверхВниз   Решение


Яблоко плавает на воде так, что 1/5 часть яблока находится над водой, а 4/5 – под водой. Под водой яблоко начинает есть рыбка со скоростью 120 г/мин., одновременно над водой яблоко начинает есть птичка со скоростью 60 г/мин. Какая часть яблока достанется рыбке, а какая – птичке?

ВверхВниз   Решение


Биссектриса угла C и внешнего угла A трапеции ABCD с основаниями BC и AD пересекаются в точке M, а биссектриса угла B и внешнего угла D – в точке N. Докажите, что середина отрезка MN равноудалена от прямых AB и CD.

ВверхВниз   Решение


Легко можно разрезать квадрат на два равных треугольника или два равных четырёхугольника.
А как разрезать квадрат на два равных пятиугольника или два равных шестиугольника?

ВверхВниз   Решение


Автор: Мухин Д.Г.

В прямоугольном треугольнике ABC с прямым углом C провели биссектрисы AK и BN, на которые опустили перпендикуляры CD и CE из вершины прямого угла. Докажите, что длина отрезка DE равна радиусу вписанной окружности.

Вверх   Решение

Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 487]      



Задача 54527

Темы:   [ Построение треугольников по различным элементам ]
[ Метод ГМТ ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки постройте треугольник по углу, биссектрисе, проведённой из вершины этого угла, и радиусу вписанной окружности.

Прислать комментарий     Решение


Задача 54534

Темы:   [ Четырехугольники (построения) ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки проведите через данную точку прямую, пересекающую две стороны данного треугольника так, чтобы точки пересечения и концы третьей стороны находились на одной окружности.

Прислать комментарий     Решение


Задача 54539

Темы:   [ Построения ]
[ Касающиеся окружности ]
[ Концентрические окружности ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки постройте окружность, касающуюся двух данных концентрических окружностей и данной прямой.

Прислать комментарий     Решение


Задача 54563

Темы:   [ Построения ]
[ Касающиеся окружности ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки постройте окружность с данным центром, касающуюся данной окружности.

Прислать комментарий     Решение


Задача 54572

Темы:   [ Построение треугольников по различным точкам ]
[ Вневписанные окружности ]
Сложность: 3+
Классы: 8,9

Постройте треугольник ABC, зная положение центров A1, B1 и C1 его вневписанных окружностей.

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 487]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .