Страница:
<< 37 38 39 40
41 42 43 >> [Всего задач: 303]
В треугольнике одна из средних линий больше одной из медиан. Докажите, что этот треугольник – тупоугольный.
На боковых сторонах AB и BC равнобедренного треугольника ABC взяты точки K и L соответственно, так что AK + LC = KL. Из середины M отрезка KL провели прямую, параллельную BC, и эта прямая пересекла сторону AC в точке N. Найдите величину угла KNL.
На дуге AB есть произвольная точка M. Из середины K отрезка MB опущен перпендикуляр KP на прямую MA.
Доказать, что все прямые PK проходят через одну точку.
AE и CD – высоты остроугольного треугольника ABC. Биссектриса угла B пересекает отрезок DE в точке F. На отрезках AE и CD взяли такие точки P и Q соответственно, что четырёхугольники ADFQ и CEPF – вписанные. Докажите, что AP = CQ.
|
|
Сложность: 3+ Классы: 10,11
|
Четырёхугольник ABCD описан около окружности с центром I. Точки M и N – середины сторон AB и CD. Известно, что IM : AB = IN : CD.
Докажите, что ABCD – трапеция или параллелограмм.
Страница:
<< 37 38 39 40
41 42 43 >> [Всего задач: 303]