Страница:
<< 113 114 115 116
117 118 119 >> [Всего задач: 603]
|
|
Сложность: 3+ Классы: 8,9,10
|
На сторонах AB и AC треугольника ABC нашлись такие точки M и N, отличные от вершин, что MC = AC и NB = AB. Точка P симметрична точке A относительно прямой BC. Докажите, что PA является биссектрисой угла MPN.
|
|
Сложность: 4- Классы: 9,10,11
|
Точка M – середина стороны AC треугольника ABC. На отрезках AM и CM выбраны точки P и Q соответственно таким образом, что PQ = AC/2. Описанная окружность треугольника ABQ второй раз пересекает сторону BC в точке X, а описанная окружность треугольника BCP, второй раз пересекает сторону AB в точке Y. Докажите, что четырёхугольник BXMY – вписанный.
Окружность, вписанная в прямоугольный треугольник ABC (∠B = 90°), касается сторон AB, BC, CA в точках C1, A1, B1 соответственно. A2, C2 – точки, симметричные точке B1 относительно прямых BC, AB соответственно. Докажите, что прямые A1A2, C1C2 пересекаются на медиане треугольника ABC.
Внутри треугольника ABC взята точка P так, что ∠ABP = ∠ACP, а ∠CBP = ∠CAP.
Докажите, что P – точка пересечения высот треугольника ABC.
Четырёхугольник ABCD вписан в окружность, M – точка пересечения его диагоналей, O1 и O2 –
центры вписанных окружностей треугольников ABM и CMD соответственно, K – середина дуги AD, не содержащей точек B и C, ∠O1KO2 = 60°, KO1 = 10. Найдите O1O2.
Страница:
<< 113 114 115 116
117 118 119 >> [Всего задач: 603]