ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Две окружности с центрами O и Q, пересекающиеся друг с другом в точках A и B, пересекают биссектрису угла OAQ в точках C и D соответственно. Отрезки OQ и AD пересекаются в точке E, причём площади треугольников OAE и QAE равны 49 и 21 соответственно. Найдите площадь четырёхугольника OAQD и отношение  BC : BD.

   Решение

Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 149]      



Задача 108527

Темы:   [ Площадь круга, сектора и сегмента ]
[ Пересекающиеся окружности ]
[ Теорема косинусов ]
Сложность: 4-
Классы: 8,9

Два круга, расстояние между центрами которых равно $ \sqrt{3}$, имеют радиусы $ \sqrt{3}$ и 3. Найдите отношение площади круга, вписанного в общую часть данных кругов, к площади общей части.

Прислать комментарий     Решение


Задача 55388

Темы:   [ Угол между касательной и хордой ]
[ Пересекающиеся окружности ]
[ Признаки и свойства параллелограмма ]
Сложность: 4-
Классы: 8,9

Окружности S1 и S2 пересекаются в точках A и P. Через точку A проведена касательная AB к окружности S1, а через точку P — прямая CD, параллельная прямой AB (точки B и C лежат на S2, точка D — на S1). Докажите, что ABCD — параллелограмм.

Прислать комментарий     Решение


Задача 56717

Темы:   [ Радикальная ось ]
[ Пересекающиеся окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Выход в пространство ]
Сложность: 4-
Классы: 9

На плоскости даны три попарно пересекающиеся окружности. Через точки пересечения каждых двух из них проведена прямая.
Докажите, что эти три прямые пересекаются в одной точке или параллельны.

Прислать комментарий     Решение

Задача 101880

Темы:   [ Вспомогательные подобные треугольники ]
[ Пересекающиеся окружности ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Вписанный угол равен половине центрального ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4-
Классы: 8,9

Две окружности с центрами O и Q, пересекающиеся друг с другом в точках A и B, пересекают биссектрису угла OAQ в точках C и D соответственно. Отрезки AD и OQ пересекаются в точке E, причём площади треугольников OAE и QAE равны 18 и 42 соответственно. Найдите площадь четырёхугольника OAQD и отношение  BC : BD.

Прислать комментарий     Решение

Задача 101881

Темы:   [ Вспомогательные подобные треугольники ]
[ Пересекающиеся окружности ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Вписанный угол равен половине центрального ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4-
Классы: 8,9

Две окружности с центрами O и Q, пересекающиеся друг с другом в точках A и B, пересекают биссектрису угла OAQ в точках C и D соответственно. Отрезки OQ и AD пересекаются в точке E, причём площади треугольников OAE и QAE равны 49 и 21 соответственно. Найдите площадь четырёхугольника OAQD и отношение  BC : BD.

Прислать комментарий     Решение

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .