ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В треугольнике АВС проведены высота ВН, медиана ВВ1 и средняя линия А1С1 (А1 лежит на стороне ВС, С1 – на стороне АВ). Прямые А1С1 и ВВ1 пересекаются в точке М, а прямые С1В1 и А1Н – в точке N. Докажите, что прямые MN и BH параллельны. Точка E лежит на стороне AC правильного треугольника ABC, K – середина отрезка AE. Прямая, проходящая через точку E перпендикулярно прямой AB, и прямая, проходящая через точку C перпендикулярно прямой BC, пересекаются в точке D. Найдите углы треугольника BKD. В ромбе ABCD ∠А = 120°. На сторонах BC и CD взяты точки M и N так, что ∠NAM = 30°. Две медианы треугольника равны. Докажите, что треугольник равнобедренный. Точка M лежит на стороне AC равностороннего треугольника ABC со стороной 3a, причём AM : MC = 1 : 2. Точки K и L, расположенные на сторонах соответственно AB и BC являются вершинами другого равностороннего треугольника MKL. Найдите его стороны.
Доказать, что если
uk = Докажите, что числа
uk можно представить в виде многочлена от cos x.
Некоторые из чисел a1, a2,...an равны +1, остальные равны -1. Доказать, что
Центр окружности радиуса 5, описанной около равнобедренной трапеции, лежит на большем основании, а меньшее основание равно 6. Найдите площадь трапеции. Окружность S1 проходит через центр окружности S2 и пересекает её в точках A и B . Хорда AC окружности S1 касается окружности S2 в точке A и делит первую окружность на дуги, градусные меры которых относятся как 5:7 . Найдите градусные меры дуг, на которые окружность S2 делится окружностью S1 . На катетах прямоугольного треугольника как на диаметрах построены окружности. Найдите их общую хорду, если катеты равны 3 и 4. Две окружности пересекаются в точках A и B. Через точку A проведены диаметры AC и AD этих окружностей. Длины сторон треугольника DEF равны 8, 10 и 14. Вписанная в этот треугольник окружность касается его сторон в точках A, B и C. Найдите площадь треугольника ABC. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 95]
Длины сторон треугольника DEF равны 8, 10 и 14. Вписанная в этот треугольник окружность касается его сторон в точках A, B и C. Найдите площадь треугольника ABC.
На сторонах выпуклого четырёхугольника ABCD, площадь
которого равна 1, взяты точки: K — на AB, L — на BC,
M — на CD, N — на AD. При этом
В треугольнике ABC угол A равен 45o, а угол C — острый. Из середины стороны BC опущен перпендикуляр NM на сторону AC. Площади треугольников NMC и ABC относятся, как 1:8. Найдите углы треугольника ABC.
На боковой стороне AB трапеции ABCD взята такая точка M, что AM : BM = 2 : 3. На противоположной стороне CD взята такая точка N, что отрезок MN делит трапецию на части, одна из которых по площади втрое больше другой. Найдите отношение CN : DN, если BC : AD = 1 : 2.
Продолжения сторон AD и BC выпуклого четырёхугольника ABCD пересекаются в точке M, а продолжения сторон AB и CD – в точке O. Отрезок MO перпендикулярен биссектрисе угла AOD. Найдите отношение площадей треугольников AOD и BOC, если OA = 6, OD = 4, CD = 1.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 95]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке