ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Через противоположные рёбра AB и CD тетраэдра ABCD проведены две параллельные плоскости. Аналогично, две параллельные плоскости проведены через рёбра BC и AD , а также – через рёбра AC и BD . Эти шесть плоскостей задают параллелепипед. Докажите, что если тетраэдр ABCD – ортоцентрический (его высоты пересекаются в одной точке), то все рёбра параллелепипеда равны; а если тетраэдр ABCD – равногранный (все его грани – равные между собой треугольники), то параллелепипед – прямоугольный. Вокруг правильного семиугольника описали окружность и вписали в него окружность. То же проделали с правильным 17-угольником. В результате каждый из многоугольников оказался расположенным в своем круговом кольце. Оказалось, что площади этих колец одинаковы. Докажите, что стороны многоугольников одинаковы.
Четырёхугольник ABCD вписан в окружность. Известно, что
AC
|
Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 330]
На сторонах AB, BC, CD и DA квадрата ABCD построены внутренним образом правильные треугольники ABK, BCL, CDM и DAN. Докажите, что середины сторон этих треугольников (не являющихся сторонами квадрата) и середины отрезков KL, LM, MN и NK образуют правильный двенадцатиугольник.
Пусть L – точка пересечения симедиан остроугольного треугольника ABC, а BH – его высота. Известно, что ∠ALH = 180° – 2∠A.
В треугольнике ABC проведены высоты AH1, BH2 и CH3. Точка M – середина отрезка H2H3. Прямая AM пересекает отрезок H2H1 в точке K.
Четырёхугольник ABCD вписан в окружность. Известно, что
AC
Внутри квадрата ABCD расположен квадрат KMXY. Докажите, что середины отрезков AK, BM, CX и DY также являются вершинами квадрата.
Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 330]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке