ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Из точки K, находящейся вне окружности с центром O, проведены две касательные KL и KM (L и M — точки касания). Отрезок KO пересекается с окружностью в точке N и с отрезком LM в точке P. Прямая MN пересекает отрезок KL в точке Q. Известно, что площади треугольников KNO и LNP равны. Найдите отношение длин отрезков KM и MN.

   Решение

Задачи

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 1396]      



Задача 102696

Темы:   [ Перегруппировка площадей ]
[ Угол между касательной и хордой ]
Сложность: 4-
Классы: 8,9

Из точки A, находящейся вне окружности с центром O, проведены две касательные AB и AC (B и C — точки касания). Отрезок AO пересекается с окружностью в точке D и с отрезком BC в точке F. Прямая BD пересекает отрезок AC в точке E. Известно, что площадь четырёхугольника DECF равна площади треугольника ABD. Найдите угол OCB.

Прислать комментарий     Решение


Задача 102697

Темы:   [ Перегруппировка площадей ]
[ Угол между касательной и хордой ]
Сложность: 4-
Классы: 8,9

Из точки K, находящейся вне окружности с центром O, проведены две касательные KL и KM (L и M — точки касания). Отрезок KO пересекается с окружностью в точке N и с отрезком LM в точке P. Прямая MN пересекает отрезок KL в точке Q. Известно, что площади треугольников KNO и LNP равны. Найдите отношение длин отрезков KM и MN.

Прислать комментарий     Решение


Задача 108039

Темы:   [ Перегруппировка площадей ]
[ Шестиугольники ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9

В шестиугольнике ABCDEF, вписанном в окружность,  AB = BC,  CD = DE,  EF = FA.
Докажите, что площадь треугольника BDF равна половине площади шестиугольника.

Прислать комментарий     Решение

Задача 108595

Темы:   [ Перегруппировка площадей ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

Автор: Фольклор

Внутри квадрата ABCD лежит квадрат PQRS. Отрезки AP, BQ, CR и DS не пересекают друг друга и стороны квадрата PQRS.
Докажите, что сумма площадей четырёхугольников ABQP и CDSR равна сумме площадей четырёхугольников BCRQ и DAPS.

Прислать комментарий     Решение

Задача 111655

Темы:   [ Перегруппировка площадей ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4-
Классы: 8,9

На сторонах AB и CD четырёхугольника ABCD взяты точки M и N так, что  AM : MB = CN : ND.  Отрезки AN и DM пересекаются в точке K, а отрезки BN и CM – в точке L. Докажите, что  SKMLN = SADK + SBCL.

Прислать комментарий     Решение

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 1396]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .