Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Квадратная доска разделена на n² прямоугольных клеток  n – 1  горизонтальными и  n – 1  вертикальными прямыми. Клетки раскрашены в шахматном порядке. Известно, что на одной диагонали все n клеток чёрные и квадратные. Докажите, что общая площадь всех чёрных клеток доски не меньше общей площади белых.

Вниз   Решение


Прямая отсекает треугольник AKN от правильного шестиугольника ABCDEF так, что  AK + AN = AB.
Найдите сумму углов, под которыми отрезок KN виден из вершин шестиугольника  (∠KAN + ∠KBN + ∠KCN + ∠KDN + ∠KEN + ∠KFN).

ВверхВниз   Решение


Внутри стороны BC правильного треугольника ABC взята точка D. Прямая, проходящая через точку C и параллельная AD, пересекает прямую AB в точке E. Докажите, что  

ВверхВниз   Решение


Футбольный мяч сшит из 32 лоскутков: белых шестиугольников и чёрных пятиугольников. Каждый чёрный лоскут граничит только с белыми, а каждый белый — с тремя чёрными и тремя белыми. Сколько лоскутков белого цвета?

ВверхВниз   Решение


Тело в форме тетраэдра ABCD с одинаковыми рёбрами поставлено гранью ABC на плоскость. Точка F – середина ребра CD, точка S лежит на прямой AB,  AB = 2BS,  точка B лежит между A и S. В точку S сажают муравья. Как должен муравей ползти в точку F, чтобы пройденный им путь был минимальным?

ВверхВниз   Решение


В треугольнике ABC известно, что AB = 10, BC = 24, а медиана BD равна 13. Окружности, вписанные в треугольники ABD и BDC касаются медианы BD в точках M и N соответственно. Найдите MN.

ВверхВниз   Решение


AA1 — высота остроугольного треугольника ABC , H — точка пересечения высот, O — центр окружности, описанной около треугольника ABC . Найдите OH , если известно, что AH=3 , A1H=2 , а радиус окружности равен 4.

ВверхВниз   Решение


Найдите радиусы вписанной и вневписанных окружностей треугольника со сторонами 5, 12 и 13.

ВверхВниз   Решение


Тело в форме тетраэдра ABCD с одинаковыми рёбрами поставлено гранью ABC на плоскость. Точка F лежит на ребре CD и  2DF = FC,  точка S лежит на прямой AB,  AB = 3BS  и точка B лежит между A и S. В точку S сажают муравья. Как должен муравей ползти в точку F, чтобы пройденный им путь был минимальным?

ВверхВниз   Решение


Две окружности O и O1 пересекаются в точке A . Провести через точку A такую прямую, чтобы отрезок BC , высекаемый на ней окружностями O и O1 , был равен данному.

ВверхВниз   Решение


2n шахматистов дважды провели круговой турнир (за победу начисляется одно очко, за ничью – ½, за поражение – 0).
Докажите, что если сумма очков каждого изменилась не менее чем на n, то она изменилась ровно на n.

ВверхВниз   Решение


В равнобедренную трапецию KLMN ( LM$ \Vert$KN) вписана окружность, касающася сторон LM и KN в точках P и Q соответственно, KN = 4$ \sqrt{6}$, PQ = 4. Прямая CN пересекает отрезок PQ в точке C, а вписанную окружность — в точках A и B (A между N и C), PC : CQ = 3. Найдите AC.

ВверхВниз   Решение


В треугольнике ABC известно, что AB = BC, AC = 4$ \sqrt{3}$, радиус вписанной окружности равен 3. Прямая AE пересекает высоту BD в точке E, а вписанную окружность — в точках M и N (M лежит между A и E), ED = 2. Найдите EN.

ВверхВниз   Решение


Разрежьте по клеточкам квадрат 7×7 на девять прямоугольников (не обязательно различных), из которых можно будет сложить любой прямоугольник со сторонами, не превосходящими 7.

ВверхВниз   Решение


Окружность с центром в точке M(3;1) проходит через начало координат. Составьте уравнение окружности.

Вверх   Решение

Задачи

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 4238]      



Задача 102721

Темы:   [ Метод координат на плоскости ]
[ Окружности (прочее) ]
Сложность: 3-
Классы: 8,9,10

Окружность с центром в точке M(3;1) проходит через начало координат. Составьте уравнение окружности.

Прислать комментарий     Решение


Задача 103006

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 5,6,7

Имеется пять звеньев цепи по три кольца в каждом.
Какое наименьшее число колец нужно расковать и сковать, чтобы соединить эти звенья в одну цепь?

Прислать комментарий     Решение

Задача 103736

Темы:   [ Шахматная раскраска ]
[ Замощения костями домино и плитками ]
[ Прямоугольные параллелепипеды ]
[ Куб ]
Сложность: 3-
Классы: 7

Автор: Ботин Д.А.

Можно ли из 13 кирпичей 1×1×2 сложить куб 3×3×3 с дыркой 1×1×1 в центре?

Прислать комментарий     Решение


Задача 103770

Темы:   [ Обратный ход ]
[ Арифметические действия. Числовые тождества ]
Сложность: 3-
Классы: 7

Решите уравнение:

1993 = 1 + 8 : (1 + 8 : (1 - 8 : (1 + 4 : (1 - 4 : (1 - 8 : x))))).

Прислать комментарий     Решение


Задача 103779

Темы:   [ Обратный ход ]
[ Задачи на проценты и отношения ]
Сложность: 3-
Классы: 6,7

Автор: Ботин Д.А.

Вся семья выпила по полной чашке кофе с молоком, причём Катя выпила четверть всего молока и шестую часть всего кофе. Сколько человек в семье?

Прислать комментарий     Решение


Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 4238]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .