ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Как, не отрывая карандаша от бумаги, провести шесть отрезков таким образом, чтобы оказались зачёркнутыми 16 точек, расположенных в вершинах квадратной сетки 4×4?

   Решение

Задачи

Страница: << 100 101 102 103 104 105 106 >> [Всего задач: 1007]      



Задача 98380

Темы:   [ Десятичная система счисления ]
[ Производящие функции ]
[ Арифметическая прогрессия ]
Сложность: 3
Классы: 7,8,9,10

а) Для каждого трёхзначного числа берём произведение его цифр, а затем эти произведения, вычисленные для всех трёхзначных чисел, складываем. Сколько получится?
б) Тот же вопрос для четырёхзначных чисел.
Прислать комментарий     Решение


Задача 103753

Темы:   [ Целочисленные решетки (прочее) ]
[ Обход графов ]
Сложность: 3
Классы: 5,6,7

Как, не отрывая карандаша от бумаги, провести шесть отрезков таким образом, чтобы оказались зачёркнутыми 16 точек, расположенных в вершинах квадратной сетки 4×4?

Прислать комментарий     Решение

Задача 103986

Темы:   [ Четность и нечетность ]
[ Степень вершины ]
Сложность: 3
Классы: 6,7,8

На третье занятие кружка по математике пришло 17 человек. Может ли случиться так, что каждая девочка знакома ровно с тремя из присутствующих на занятии кружковцев, а каждый мальчик ровно с пятью?

Прислать комментарий     Решение

Задача 108978

Темы:   [ Десятичная система счисления ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3
Классы: 7,8,9

Найти такое трёхзначное число, удвоив которое, мы получим число, выражающее количество цифр, необходимое для написания всех последовательных целых чисел от единицы до этого искомого трёхзначного числа (включительно).

Прислать комментарий     Решение

Задача 109436

Темы:   [ Количество и сумма делителей числа ]
[ Классическая комбинаторика (прочее) ]
[ Перебор случаев ]
Сложность: 3
Классы: 7,8,9

Найдите все нечётные натуральные числа, большие 500, но меньшие 1000, у каждого из которых сумма последних цифр всех делителей (включая 1 и само число) равна 33.

Прислать комментарий     Решение

Страница: << 100 101 102 103 104 105 106 >> [Всего задач: 1007]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .