Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Число умножили на сумму его цифр и получили 2008. Найдите это число.

Вниз   Решение


Даны положительные числа  a1, a2, ..., an.  Известно, что  a1 + a2 + ... + an ≤ ½.  Докажите, что  (1 + a1)(1 + a2)...(1 + an) < 2.

ВверхВниз   Решение


Автор: Сонкин М.

Пусть O – центр описанной окружности остроугольного треугольника ABC, SA, SB, SC – окружности с центром O, касающиеся сторон BC, CA и AB соответственно. Докажите, что сумма трёх углов: между касательными к SA, проведёнными из точки A, к SB – из точки B, и к SC – из точки C, равна 180°.

ВверхВниз   Решение


Пусть a, b, c – положительные числа, сумма которых равна 1. Докажите неравенство:  

ВверхВниз   Решение


Паша записал на доске пример на сложение, после чего заменил некоторые цифры буквами, причём одинаковые цифры – одинаковыми буквами, а различные цифры – различными буквами. У него получилось:  КРОСС + 2011 = СТАРТ.  Докажите, что Паша ошибся.

ВверхВниз   Решение


Дан равносторонний треугольник ABC. Для произвольной точки P внутри треугольника рассмотрим точки A' и C' пересечения прямых AP с BC и CP с BA соответственно. Найдите геометрическое место точек P, для которых отрезки AA' и CC' равны.

ВверхВниз   Решение


На плоскости дан угол и точка К внутри него. Доказать, что найдётся точка М, обладающая следующим свойством: если произвольная прямая, проходящая через К, пересекает стороны угла в точках А и В, то МК является биссектрисой угла АМВ.

ВверхВниз   Решение


Через вершины B и C треугольника ABC проведена окружность, которая пересекает сторону AB в точке K и сторону AC в точке L. Найдите AB, если AK = KB, AL = l, $ \angle$BCK = $ \alpha$, $ \angle$CBL = $ \beta$.

ВверхВниз   Решение


Дан квадратный трёхчлен  f(x) = x² + ax + b.  Уравнение  f(f(x)) = 0  имеет четыре различных действительных корня, сумма двух из которых равна  –1. Докажите, что  b ≤ – ¼.

ВверхВниз   Решение


Вписанная окружность треугольника ABC  (AB > BC)  касается сторон AB и AC в точках P и Q соответственно, RS – средняя линия, параллельная стороне AB, T – точка пересечения прямых PQ и RS. Докажите, что точка T лежит на биссектрисе угла B треугольника ABC.

ВверхВниз   Решение


Показать, что если  a > b > 0,  то разность между средним арифметическим и средним геометрическим этих чисел находится между     и  

ВверхВниз   Решение


Треугольник можно разрезать на три равных треугольника. Докажите, что один из его углов равен 60°.

ВверхВниз   Решение


Дима пишет подряд натуральные числа: 123456789101112... .
На каких местах, считая от начала, в первый раз будут стоять три цифры 5 подряд?

ВверхВниз   Решение


Ребро правильного тетраэдра ABCD равно a . На рёбрах AB и CD взяты соответственно точки E и F так, что вписанная в тетраэдр сфера делит отрезок EF , на три части, длины которых относятся как 3:5:4, считая от точки E . Найдите длину отрезка EF .

ВверхВниз   Решение


Найдите все простые числа р, для каждого из которых существует такое натуральное число m, что    – также натуральное число.

ВверхВниз   Решение


По кругу расставлены цифры 1, 2, 3,..., 9 в произвольном порядке. Каждые три цифры, стоящие подряд по часовой стрелке, образуют трёхзначное число. Найдите сумму всех девяти таких чисел. Зависит ли она от порядка, в котором записаны цифры?

Вверх   Решение

Задачи

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 4238]      



Задача 103806

Темы:   [ Подсчет двумя способами ]
[ Десятичная система счисления ]
Сложность: 3-
Классы: 7

По кругу расставлены цифры 1, 2, 3,..., 9 в произвольном порядке. Каждые три цифры, стоящие подряд по часовой стрелке, образуют трёхзначное число. Найдите сумму всех девяти таких чисел. Зависит ли она от порядка, в котором записаны цифры?

Прислать комментарий     Решение


Задача 103807

Темы:   [ Обратный ход ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 3-
Классы: 7

Два пирата играли на золотые монеты. Сначала первый проиграл половину своих монет (отдал второму), потом второй проиграл половину своих, потом снова первый проиграл половину своих. В результате у первого оказалось 15 монет, а у второго — 33. Сколько монет было у первого пирата до начала игры?

Прислать комментарий     Решение


Задача 103810

Темы:   [ Подсчет двумя способами ]
[ Замощения костями домино и плитками ]
Сложность: 3-
Классы: 7

Футбольный мяч сшит из 32 лоскутков: белых шестиугольников и чёрных пятиугольников. Каждый чёрный лоскут граничит только с белыми, а каждый белый — с тремя чёрными и тремя белыми. Сколько лоскутков белого цвета?

Прислать комментарий     Решение


Задача 105049

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Тождественные преобразования ]
Сложность: 3-
Классы: 7,8,9

Найдите какие-нибудь четыре попарно различных натуральных числа a, b, c, d, для которых числа  a² + 2cd + b²  и  c² + 2ab + d²  являются полными квадратами.

Прислать комментарий     Решение

Задача 105098

Тема:   [ Процессы и операции ]
Сложность: 3-
Классы: 6,7,8

Даны шесть слов:
   ЗАНОЗА
   ЗИПУНЫ
   КАЗИНО
   КЕФАЛЬ
   ОТМЕЛЬ
   ШЕЛЕСТ
За один шаг можно заменить любую букву в любом из этих слов на любую другую (например, за один шаг можно получить из слова ЗАНОЗА слово ЗКНОЗА. Какое наименьшее число шагов нужно, чтобы сделать все слова одинаковыми (допускаются бессмысленные)?

Прислать комментарий     Решение


Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 4238]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .