Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Докажите, что в прямоугольном треугольнике каждый катет меньше гипотенузы.

Вниз   Решение


Автор: Джукич Д.

Все стороны выпуклого пятиугольника равны, а все углы различны. Докажите, что максимальный и минимальный углы прилегают к одной стороне пятиугольника.

ВверхВниз   Решение


Сколько существует пятизначных чисел, получаемых из числа 12345 перестановкой цифр и у которых чётные цифры не стоят рядом?

ВверхВниз   Решение


Серёжа вырезал из картона две одинаковые фигуры. Он положил их с нахлёстом на дно прямоугольного ящика. Дно оказалось полностью покрыто. В центр дна вбили гвоздь. Мог ли гвоздь проткнуть одну картонку и не проткнуть другую?

ВверхВниз   Решение


Кузнечик прыгает по отрезку [0,1]. За один прыжок он может попасть из точки x либо в точку x/31/2, либо в точку x/31/2+(1-(1/31/2)). На отрезке [0,1] выбрана точка a.
Докажите, что, начиная из любой точки, кузнечик может через несколько прыжков оказаться на расстоянии меньше 1/100 от точки a.

ВверхВниз   Решение


Сколькими способами можно поставить 8 ладей на шахматную доску так, чтобы они не били друг друга?

ВверхВниз   Решение


Завод выпускает погремушки в виде кольца с надетыми на него тремя красными и семью синими шариками. Сколько различных погремушек может быть выпущено? (Две погремушки считаются одинаковыми, если одна из них может быть получена из другой только передвижением шариков по кольцу и переворачиванием.)

ВверхВниз   Решение


Две окружности пересекаются в точках P и Q. Прямая пересекает эти окружности последовательно в точках A, B, C и D, как показано на рисунке.

Докажите, что  ∠APB = ∠CQD.

ВверхВниз   Решение


Для данной пары окружностей постройте две концентрические окружности, каждая из которых касается двух данных. Сколько решений имеет задача, в зависимости от расположения окружностей?

ВверхВниз   Решение


На продолжении наибольшей стороны AC треугольника ABC отложен отрезок |CD|=|BC| . Доказать, что ABD тупой.

ВверхВниз   Решение


Точка M расположена на боковой стороне AB трапеции ABCD, причём  AM : BM = 2 : 1.  Прямая, проходящая через точку M параллельно основаниям AD и BC, пересекает боковую сторону CD в точке N. Найдите MN, если  AD = 18,  BC = 6.

ВверхВниз   Решение


Серединный перпендикуляр к стороне BC треугольника ABC пересекает сторону AB в точке D , а продолжение стороны AC за точку A – в точке E . Докажите, что AD.

ВверхВниз   Решение


Дед звал внука к себе в деревню:
  – Вот посмотришь, какой я необыкновенный сад посадил! У меня там растёт четыре груши, а ещё есть яблони, причём они посажены так, что на расстоянии 10 метров от каждой яблони растёт ровно две груши.
  – Ну и что тут интересного, – ответил внук. – У тебя всего две яблони.
 – А вот и не угадал, – улыбнулся дед. – Яблонь у меня в саду больше, чем груш.
Нарисуйте, как могли расти яблони и груши в саду у деда. Постарайтесь разместить на рисунке как можно больше яблонь, не нарушая условий.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 104061

Темы:   [ Наглядная геометрия ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 4-
Классы: 6,7,8

Дед звал внука к себе в деревню:
  – Вот посмотришь, какой я необыкновенный сад посадил! У меня там растёт четыре груши, а ещё есть яблони, причём они посажены так, что на расстоянии 10 метров от каждой яблони растёт ровно две груши.
  – Ну и что тут интересного, – ответил внук. – У тебя всего две яблони.
 – А вот и не угадал, – улыбнулся дед. – Яблонь у меня в саду больше, чем груш.
Нарисуйте, как могли расти яблони и груши в саду у деда. Постарайтесь разместить на рисунке как можно больше яблонь, не нарушая условий.

Прислать комментарий     Решение

Задача 104121

Темы:   [ Наглядная геометрия ]
[ Экстремальные свойства (прочее) ]
Сложность: 4
Классы: 7,8,9,10

На плоскости даны 16 точек (см. рисунок).

  а) Покажите, что можно стереть не более восьми из них так, что из оставшихся никакие четыре не будут лежать в вершинах квадрата.
  б) Покажите, что можно обойтись стиранием шести точек.
  в) Найдите минимальное число точек, которые достаточно стереть для этого.

Прислать комментарий     Решение

Задача 88260

Темы:   [ Разные задачи на разрезания ]
[ Наглядная геометрия ]
Сложность: 2
Классы: 5,6,7

Легко можно разрезать квадрат на два равных треугольника или два равных четырёхугольника.
А как разрезать квадрат на два равных пятиугольника или два равных шестиугольника?

Прислать комментарий     Решение

Задача 32095

Темы:   [ Обход графов ]
[ Наглядная геометрия ]
Сложность: 2+
Классы: 5,6,7,8

Можно ли нарисовать эту картинку (см. рис.), не отрывая карандаша от бумаги и проходя по каждой линии по одному разу?

Прислать комментарий     Решение

Задача 35072

Темы:   [ Разрезания (прочее) ]
[ Наглядная геометрия ]
Сложность: 2+
Классы: 7,8,9

Можно ли поверхность единичного куба оклеить четырьмя треугольниками площади 1,5?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .