Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Можно ли нарисовать на клетчатой бумаге многоугольник и поделить его на две равные части разрезом такой формы, как показано на рисунке
  а) слева;  б) в центре;  в) справа?

(Во всех пунктах разрез лежит внутри многоугольника, на границу выходят только концы разреза. Стороны многоугольника и звенья разреза идут по линиям сетки, маленькие звенья в два раза короче больших.)

Вниз   Решение


В трапеции ABCD сторона AB перпендикулярна основаниям AD и BC . Окружность касается стороны AB в точке K , лежащей между точками A и B , имеет с отрезком BC единственную общую точку C , проходит через точку D и пересекает отрезок AD в точке E , отличной от точки D . Найдите расстояние от точки K до прямой CD , если AD=48 , BC=12 .

ВверхВниз   Решение


Вес каждой гирьки набора – нецелое число грамм. Ими можно уравновесить любой целый вес от 1 г до 40 г (гири кладутся на одну чашку весов, измеряемый вес – на другую). Каково наименьшее число гирь в таком наборе?

ВверхВниз   Решение


Плоский угол при вершине правильной четырёхугольной пирамиды равен ϕ . Найдите угол боковой грани с плоскостью основания пирамиды.

ВверхВниз   Решение


Найдите объём прямой призмы, основанием которой служит прямоугольный треугольник с острым углом α , если боковое ребро призмы равно l и образует с диагональю большей боковой грани угол β .

ВверхВниз   Решение


Окружность касается сторон AC и BC треугольника ABC в точках A и B соответственно. На дуге этой окружности, лежащей внутри треугольника, расположена точка K так, что расстояния от неё до сторон AC и BC равны 6 и 24 соответственно. Найдите расстояние от точки K до стороны AB.

ВверхВниз   Решение


Автор: Храмцов Д.

Можно ли во всех точках плоскости с целыми координатами записать натуральные числа так, чтобы три точки с целыми координатами лежали на одной прямой тогда и только тогда, когда записанные в них числа имели общий делитель, больший единицы?

ВверхВниз   Решение


Раскраска вершин графа называется правильной, если вершины одного цвета не соединены ребром. Некоторый граф правильно раскрашен в k цветов, причём его нельзя правильно раскрасить в меньшее число цветов. Докажите, что в этом графе существует путь, вдоль которого встречаются вершины всех k цветов ровно по одному разу.

Вверх   Решение

Задачи

Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 1010]      



Задача 79616

Темы:   [ Обход графов ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 9

Можно ли n раз рассадить  2n + 1  человека за круглым столом так, чтобы никакие двое не сидели рядом более одного раза, если  а)  n = 5;  б)  n = 10?

Прислать комментарий     Решение

Задача 98365

Темы:   [ Деревья ]
[ Раскраски ]
[ Куб ]
[ Доказательство от противного ]
[ Перебор случаев ]
Сложность: 4+
Классы: 9,10

Раскрашенный в чёрный и белый цвета кубик с гранью в одну клетку поставили на одну из клеток шахматной доски и прокатили по ней так, что кубик побывал на каждой клетке ровно по одному разу. Можно ли так раскрасить кубик и так прокатить его по доске, чтобы каждый раз цвета клетки и соприкоснувшейся с ней грани совпадали?
Прислать комментарий     Решение


Задача 105069

Темы:   [ Обход графов ]
[ Раскраски ]
[ Процессы и операции ]
Сложность: 4+
Классы: 8,9,10,11

Раскраска вершин графа называется правильной, если вершины одного цвета не соединены ребром. Некоторый граф правильно раскрашен в k цветов, причём его нельзя правильно раскрасить в меньшее число цветов. Докажите, что в этом графе существует путь, вдоль которого встречаются вершины всех k цветов ровно по одному разу.

Прислать комментарий     Решение

Задача 109791

Темы:   [ Обход графов ]
[ Раскраски ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 8,9,10

В стране n городов. Между каждыми двумя из них проложена либо автомобильная, либо железная дорога. Турист хочет объехать страну, побывав в каждом городе ровно один раз, и вернуться в город, с которого он начинал путешествие. Докажите, что турист может выбрать город, с которого он начнет путешествие, и маршрут так, что ему придётся поменять вид транспорта не более одного раза.

Прислать комментарий     Решение

Задача 110177

Темы:   [ Задачи с ограничениями ]
[ Десятичная система счисления ]
[ Иррациональные неравенства ]
Сложность: 4+
Классы: 9,10,11

Каких точных квадратов, не превосходящих 1020, больше: тех, у которых семнадцатая с конца цифра – 7, или тех, у которых семнадцатая с конца цифра – 8?

Прислать комментарий     Решение

Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 1010]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .