ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Две окружности пересекаются в точках A и B. В точке A к обеим проведены касательные, пересекающие окружности в точках M и N. Прямые BM и BN пересекают окружности еще раз в точках P и Q (P – на прямой BM, Q – на прямой BN). Докажите, что отрезки MP и NQ равны.

   Решение

Задачи

Страница: << 74 75 76 77 78 79 80 >> [Всего задач: 499]      



Задача 102502

Темы:   [ Вспомогательные подобные треугольники ]
[ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

В трапеции KLMN известно, что  LM || KN,  ∠LMN = 90°. Прямая, перпендикулярная стороне KL, пересекает сторону KL в точке A, а сторону MN – в точке B. Известно также, что  KB = a,  AN = b,  а расстояние от точки L до прямой KB равно c. Найдите расстояние от точки M до прямой AN.

Прислать комментарий     Решение

Задача 107757

Темы:   [ Вспомогательные равные треугольники ]
[ Вспомогательные подобные треугольники ]
[ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4-
Классы: 8,9,10

Две окружности пересекаются в точках A и B. В точке A к обеим проведены касательные, пересекающие окружности в точках M и N. Прямые BM и BN пересекают окружности еще раз в точках P и Q (P – на прямой BM, Q – на прямой BN). Докажите, что отрезки MP и NQ равны.

Прислать комментарий     Решение

Задача 108094

Темы:   [ Пересекающиеся окружности ]
[ Вписанный угол равен половине центрального ]
[ Окружность, вписанная в угол ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 9,10,11

Окружность Ω1 проходит через центр окружности Ω2. Из точки C, лежащей на Ω1, проведены касательные к Ω2, вторично пересекающие Ω1 в точках A и B. Докажите, что отрезок AB перпендикулярен линии центров окружностей.

Прислать комментарий     Решение

Задача 108639

Темы:   [ Ортоцентр и ортотреугольник ]
[ Три точки, лежащие на одной прямой ]
[ Свойства симметрий и осей симметрии ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

Вокруг остроугольного треугольника ABC описана окружность. Продолжения высот треугольника, проведённых из вершин A и C, пересекают окружность в точках E и F соответственно, D произвольная точка на (меньшей) дуге AC, K – точка пересечения DF и AB, L – точка пересечения DE и BC. Докажите, что прямая KL проходит через ортоцентр треугольника ABC.

Прислать комментарий     Решение

Задача 111696

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Вспомогательная окружность ]
[ Три точки, лежащие на одной прямой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

Из точки M окружности, описанной около прямоугольника ABCD, опустили перпендикуляры MQ и MP на две его противоположные стороны и перпендикуляры MR и MT на продолжения двух других сторон. Докажите, что прямые PR и QT перпендикулярны, а точка их пересечения принадлежит диагонали прямоугольника ABCD.

Прислать комментарий     Решение

Страница: << 74 75 76 77 78 79 80 >> [Всего задач: 499]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .