Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Аня ждёт автобус. Какое событие имеет наибольшую вероятность?
  А = {Аня ждёт автобус не меньше минуты},
  В = {Аня ждёт автобус не меньше двух минут},
  С = {Аня ждёт автобус не меньше пяти минут}.

Вниз   Решение


У учеников 5А класса было в сумме 2015 карандашей. Один из них потерял коробку с пятью карандашами, а вместо неё купил коробку, в которой 50 карандашей. Сколько теперь карандашей у учеников 5А класса?

ВверхВниз   Решение


На сторонах AB и BC остроугольного треугольника ABC внешним образом построены квадраты ABC1D1 и A2BCD2.
Докажите, что точка пересечения прямых AD2 и CD1 лежит на высоте BH.

ВверхВниз   Решение


Точка E – середина той дуги AB описанной окружности треугольника ABC, на которой лежит точка C; C1 – середина стороны AB. Из точки E опущен перпендикуляр EF на AC. Докажите, что:
  а) прямая C1F делит пополам периметр треугольника ABC;
  б) три такие прямые, построенные для каждой стороны треугольника, пересекаются в одной точке.

ВверхВниз   Решение


Доказать, что если  p/q – несократимая рациональная дробь, являющаяся корнем полинома  f(x) с целыми коэффициентами, то  p – kq  есть делитель числа  f(k) при любом целом k.

ВверхВниз   Решение


Из вершины A остроугольного треугольника ABC по биссектрисе угла A выпустили бильярдный шарик, который отразился от стороны BC по закону "угол падения равен углу отражения" и дальше катился по прямой, уже ни от чего не отражаясь. Докажите, что если  ∠A = 60°,  то траектория шарика проходит через центр описанной окружности треугольника ABC.

ВверхВниз   Решение


Дан $ \Delta$ABC и точка D внутри него, причем AC - DA > 1 и BC - BD > 1. Берётся произвольная точка E внутри отрезка AB. Доказать, что EC - ED > 1.

ВверхВниз   Решение


В каждой клетке доски 8×8 написали по одному натуральному числу. Оказалось, что при любом разрезании доски на доминошки суммы чисел во всех доминошках будут разные. Может ли оказаться, что наибольшее записанное на доске число не больше 32?

ВверхВниз   Решение


Дано уравнение  xn – a1xn–1a2xn–2 – ... – an–1x – an = 0,  где  a1 ≥ 0,  a2 ≥ 0,  an ≥ 0.
Доказать, что это уравнение не может иметь двух положительных корней.

ВверхВниз   Решение


На окружности даны четыре точки A, B, C, D. Через каждую пару соседних точек проведена окружность. Вторые точки пересечения соседних окружностей обозначим через A1, B1, C1, D1. (Некоторые из них могут совпадать с прежними.) Доказать, что A1, B1, C1, D1 лежат на одной окружности.

ВверхВниз   Решение


В ряд стоят 100 детей разного роста. Разрешается выбрать любых 50 детей, стоящих подряд, и переставить их между собой как угодно (остальные остаются на своих местах). Как всего за шесть таких перестановок гарантированно построить всех детей по убыванию роста слева направо?

ВверхВниз   Решение


Дан треугольник ABC. На сторонах AB, BC, CA взяты соответственно точки C1, A1, B1 так, что  AC1 : C1B = BA1 : A1C = CB1 : B1A = 1 : n.  На сторонах A1B1, B1C1, C1A1 треугольника A1B1C1 взяты соответственно точки C2, A2, B2 так, что  A1C2 : C2B1 = B1A2 : A2C1 = C1B2 : B2A1 = n : 1.  Доказать, что  A2C2 || AC,  C2B2 || CB,   B2A2 || BA.

ВверхВниз   Решение


Целые числа от 1 до n записаны в строчку. Под ними записаны те же числа в другом порядке. Может ли случиться так, что сумма каждого числа и записанного под ним есть точный квадрат  а) при  n = 9,   б) при  n = 11,   в) при  n = 1996.

Вверх   Решение

Задачи

Страница: << 125 126 127 128 129 130 131 >> [Всего задач: 1222]      



Задача 107806

Темы:   [ Числовые таблицы и их свойства ]
[ Разбиения на пары и группы; биекции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10

Целые числа от 1 до n записаны в строчку. Под ними записаны те же числа в другом порядке. Может ли случиться так, что сумма каждого числа и записанного под ним есть точный квадрат  а) при  n = 9,   б) при  n = 11,   в) при  n = 1996.

Прислать комментарий     Решение

Задача 109594

Темы:   [ Простые числа и их свойства ]
[ Перебор случаев ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 7,8,9

Найдите все такие простые числа p, q, r и s, что их сумма – простое число. а числа  p² + qs  и  p² + qr  – квадраты натуральных чисел. (Числа p, q, r и s предполагаются различными.)

Прислать комментарий     Решение

Задача 109595

Темы:   [ Объединение, пересечение и разность множеств ]
[ Разбиения на пары и группы; биекции ]
[ Таблицы и турниры (прочее) ]
[ Двоичная система счисления ]
[ Принцип Дирихле (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Оценка + пример ]
Сложность: 4-
Классы: 7,8,9,10

В классе 16 учеников. Каждый месяц учитель делит класс на две группы.
Какое наименьшее количество месяцев должно пройти, чтобы каждые два ученика в какой-то из месяцев оказались в разных группах?

Прислать комментарий     Решение

Задача 109712

Темы:   [ Количество и сумма делителей числа ]
[ Разбиения на пары и группы; биекции ]
[ Делимость чисел. Общие свойства ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 7,8,9,10

Автор: Храбров А.

Совершенное число, большее 28, делится на 7. Докажите, что оно делится на 49.

Прислать комментарий     Решение

Задача 109720

Темы:   [ Количество и сумма делителей числа ]
[ Разбиения на пары и группы; биекции ]
[ Делимость чисел. Общие свойства ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 7,8,9,10

Автор: Храбров А.

Совершенное число, большее 6, делится на 3. Докажите, что оно делится на 9.

Прислать комментарий     Решение

Страница: << 125 126 127 128 129 130 131 >> [Всего задач: 1222]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .