ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

  На доске написаны три функции:  f1(x) = x + 1/x,   f2(x) = x²,   f3(x) = (x – 1)².  Можно складывать, вычитать и перемножать эти функции (в том числе возводить в квадрат, в куб, ...), умножать их на произвольное число, прибавлять к ним произвольное число, а также проделывать эти операции с полученными выражениями. Получите таким образом функцию 1/x.
  Докажите, что если стереть с доски любую из функций  f1,  f2,  f3, то получить 1/x невозможно.

   Решение

Задачи

Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 416]      



Задача 115397

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Ограниченность, монотонность ]
[ Возрастание и убывание. Исследование функций ]
[ Индукция (прочее) ]
Сложность: 5
Классы: 10,11

Последовательность a1,a2,.. такова, что a1(1,2) и ak+1=ak+ при любом натуральном  k . Докажите, что в ней не может существовать более одной пары членов с целой суммой.
Прислать комментарий     Решение


Задача 73620

Темы:   [ Квадратные корни (прочее) ]
[ Рациональные и иррациональные числа ]
[ Индукция (прочее) ]
[ Уравнения в целых числах ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 5+
Классы: 8,9,10

Для любых натуральных чисел a1, a2, ..., am, никакие два из которых не равны друг другу и ни одно из которых не делится на квадрат натурального числа, большего единицы, а также для любых целых и отличных от нуля целых чисел b1, b2, ..., bm сумма     не равна нулю. Докажите это.

Прислать комментарий     Решение

Задача 105220

Темы:   [ Раскладки и разбиения ]
[ Целая и дробная части. Принцип Архимеда ]
[ Линейные неравенства и системы неравенств ]
[ Системы алгебраических неравенств ]
[ Средние величины ]
Сложность: 5+
Классы: 9,10,11

Все имеющиеся на складе конфеты разных сортов разложены по n коробкам, на которые установлены цены в 1, 2, ..., n  у. е. соответственно. Требуется купить такие k из этих коробок наименьшей суммарной стоимости, которые содержат заведомо не менее k/n массы всех конфет. Известно, что масса конфет в каждой коробке не превосходит массы конфет в любой более дорогой коробке.
  а) Какие коробки следует купить при  n = 10  и  k = 3 ?
  б) Тот же вопрос для произвольных натуральных  n ≥ k.

Прислать комментарий     Решение

Задача 107841

Темы:   [ Инварианты ]
[ Производная в точке ]
[ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Комплексные числа помогают решить задачу ]
Сложность: 5+
Классы: 10,11

  На доске написаны три функции:  f1(x) = x + 1/x,   f2(x) = x²,   f3(x) = (x – 1)².  Можно складывать, вычитать и перемножать эти функции (в том числе возводить в квадрат, в куб, ...), умножать их на произвольное число, прибавлять к ним произвольное число, а также проделывать эти операции с полученными выражениями. Получите таким образом функцию 1/x.
  Докажите, что если стереть с доски любую из функций  f1,  f2,  f3, то получить 1/x невозможно.

Прислать комментарий     Решение

Задача 61336

Темы:   [ Доказательство тождеств. Преобразования выражений ]
[ Предел последовательности, сходимость ]
[ Тригонометрия (прочее) ]
Сложность: 5+
Классы: 10,11

Докажите равенство

$\displaystyle {\frac{2}{\pi}}$ = $\displaystyle \sqrt{\frac{1}{2}}$ . $\displaystyle \sqrt{\frac{1}{2}+\frac{1}{2}
\sqrt{\frac{1}{2}}}$ . $\displaystyle \sqrt{\frac{1}{2}+\frac{1}{2}
\sqrt{\frac{1}{2}+\frac{1}{2}
\sqrt{\frac{1}{2}}}}$...


Прислать комментарий     Решение

Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 416]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .