ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Основание пирамиды совпадает с одной из граней куба, а вершина – с центром противоположной грани. Найдите угол между соседними боковыми гранями пирамиды.

Вниз   Решение


Найдите все пары простых чисел, разность квадратов которых является простым числом.

ВверхВниз   Решение


С центром в вершине D квадрата ABCD построена окружность, проходящая через вершины A и C . Через середину M стороны AB проведена касательная к этой окружности, пересекающая сторону BC в точке K . Найдите отношение BK:KC .

ВверхВниз   Решение


В кубе АВСDА1В1С1D1 площадь ортогональной проекции грани АА1В1В на плоскость, перпендикулярную диагонали АС1, равна 1.
Найдите площадь ортогональной проекции куба на эту плоскость.

ВверхВниз   Решение


Биллиард имеет форму выпуклого четырехугольника ABCD. Из точки K стороны AB выпустили биллиардный шар, который отразился в точках L, M, N от сторон BC, CD, DA, возвратился в точку K и вновь вышел на траекторию KLMN. Докажите, что четырехугольник ABCD можно вписать в окружность.

ВверхВниз   Решение


Пусть $l_a$, $l_b$ и $l_c$ – длины биссектрис углов $A$, $B$ и $C$ треугольника $ABC$, а $m_a$, $m_b$ и $m_c$ – длины соответствующих медиан. Докажите, что $$ \frac{l_a}{m_a} + \frac{l_b}{m_b} +\frac{l_c}{m_c} > 1.$$

Вверх   Решение

Задачи

Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 290]      



Задача 53047

Темы:   [ Касающиеся окружности ]
[ Теорема косинусов ]
[ Неравенство треугольника (прочее) ]
Сложность: 4+
Классы: 8,9

На сторонах AB и AC угла BAC, равного 120o, как на диаметрах построены полуокружности. В общую часть образовавшихся полукругов вписана окружность максимального радиуса. Найдите радиус этой окружности, если AB = 4, AC = 2.

Прислать комментарий     Решение


Задача 108104

Темы:   [ Длины сторон, высот, медиан и биссектрис ]
[ Против большей стороны лежит больший угол ]
[ Неравенство треугольника (прочее) ]
[ Отрезок внутри треугольника меньше наибольшей стороны ]
Сложность: 5-
Классы: 8,9

Пусть $l_a$, $l_b$ и $l_c$ – длины биссектрис углов $A$, $B$ и $C$ треугольника $ABC$, а $m_a$, $m_b$ и $m_c$ – длины соответствующих медиан. Докажите, что $$ \frac{l_a}{m_a} + \frac{l_b}{m_b} +\frac{l_c}{m_c} > 1.$$
Прислать комментарий     Решение


Задача 65211

Темы:   [ Сферы (прочее) ]
[ Комбинаторная геометрия (прочее) ]
[ Неравенство треугольника (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 5
Классы: 10,11

На поверхности сферической планеты расположены четыре материка, отделённые друг от друга океаном. Назовем точку океана особой, если для нее найдутся не менее трёх ближайших (находящихся от нее на равных расстояниях) точек суши, причём все на разных материках. Какое наибольшее число особых точек может быть на этой планете?

Прислать комментарий     Решение

Задача 97930

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Описанные четырехугольники ]
[ Выпуклые многоугольники ]
[ Сумма длин диагоналей четырехугольника ]
[ Неравенства с углами ]
Сложность: 3-
Классы: 8,9

Рассматривается выпуклый восьмиугольник. С помощью диагонали от него можно отрезать четырёхугольник, причём это можно сделать восемью способами. Может ли случиться, что среди этих восьми четырёхугольников имеется
  а) четыре,
  б) пять
таких, в которые можно вписать окружность?

Прислать комментарий     Решение

Задача 116495

Темы:   [ Правильный тетраэдр ]
[ Свойства сечений ]
[ Свойства разверток ]
[ Неравенство треугольника (прочее) ]
Сложность: 3-
Классы: 10,11

Длина ребра правильного тетраэдра равна a. Через одну из вершин тетраэдра проведено треугольное сечение.
Докажите, что периметр P этого треугольника удовлетворяет неравенству  P > 2a.

Прислать комментарий     Решение

Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 290]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .