ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Радиус описанной окружности треугольника ABC равен радиусу окружности, касающейся стороны AB в точке C' и продолжений двух других сторон в точках A' и B' . Докажите, что центр описанной окружности треугольника ABC совпадает с ортоцентром (точкой пересечения высот) треугольника A'B'C' .

   Решение

Задачи

Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 295]      



Задача 66304

Темы:   [ Правильные многоугольники ]
[ Три прямые, пересекающиеся в одной точке ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Подобные фигуры ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4-
Классы: 8,9

На плоскости даны два правильных тринадцатиугольника A1A2...A13 и B1B2...B13, причём точки B1 и A13 совпадают и лежат на отрезке A1B13, а многоугольники лежат по одну сторону от этого отрезка. Докажите, что прямые A1A9, B13B8 и A8B9 проходят через одну точку.

Прислать комментарий     Решение

Задача 65810

Темы:   [ Ортоцентр и ортотреугольник ]
[ Выход в пространство ]
[ Равногранный тетраэдр ]
[ Прямая Эйлера и окружность девяти точек ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4+
Классы: 10,11

Автор: Якубов А.

Пусть MA, MB, MC – середины сторон неравнобедренного треугольника ABC, точки HA, HB, HC, отличные от MA, MB, MC, лежащие на соответствующих сторонах, таковы, что  MAHB = MAHC,  MBHA = MBHC,  MCHA = MCHB.  Докажите, что HA, HB, HC – основания высот треугольника ABC.

Прислать комментарий     Решение

Задача 108111

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Признаки и свойства параллелограмма ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 5-
Классы: 8,9

Радиус описанной окружности треугольника ABC равен радиусу окружности, касающейся стороны AB в точке C' и продолжений двух других сторон в точках A' и B' . Докажите, что центр описанной окружности треугольника ABC совпадает с ортоцентром (точкой пересечения высот) треугольника A'B'C' .
Прислать комментарий     Решение


Задача 108193

Темы:   [ Вспомогательная окружность ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Пересекающиеся окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 5-
Классы: 8,9,10

Автор: Сонкин М.

Окружности S1 и S2 с центрами O1 и O2 пересекаются в точках A и B (см рис.). Луч O1B пересекает окружность S2 в точке F , а луч O2B пересекает окружность S1 в точке E . Прямая, проходящая через точку B параллельно прямой EF , вторично пересекает окружности S1 и S2 в точках M и N соответственно. Докажите, что MN=AE+AF .
Прислать комментарий     Решение


Задача 111764

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Вписанные четырехугольники (прочее) ]
[ Вспомогательная окружность ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 5-
Классы: 9,10,11

В треугольнике ABC на стороне BC выбрана точка M так, что точка пересечения медиан треугольника ABM лежит на описанной окружности треугольника ACM , а точка пересечения медиан треугольника ACM лежит на описанной окружности треугольника ABM . Докажите, что медианы треугольников ABM и ACM из вершины M равны.
Прислать комментарий     Решение


Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 295]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .