ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Окружности S1 и S2 пересекаются в точках M и N. Докажите, что если вершины A и C некоторого прямоугольника ABCD лежат на окружности S1, а вершины B и D – на окружности S2, то точка пересечения диагоналей прямоугольника лежит на прямой MN. Решение |
Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 401]
Две окружности касаются друг друга внешним образом в точке A. Через точку B на их общей касательной AB проведены две прямые, одна из которых пересекает первую окружность в точках M и N, а другая вторую окружность в точках P и Q. Известно, что AB = 6, BM = 9, BP = 5. Найдите отношение площадей треугольников MNO и PQO, где точка O — точка пересечения прямых MP и NQ.
Окружность C2 расположена внутри окружности C1 и касается ее в точке P. Секущая MN окружности C1(M, N C1) и секущая ST окружности C2 ( S, T C2) пересекаются в точке Q, причем PQ является касательной к окружности C1. Отрезки NS и TM пересекаются в точке O. Площадь треугольника MON в 16 раз больше площади треугольника OTS. Найдите длину отрезка PQ, если SQ = 9, MQ = 6 и TQ > SQ, NQ > MQ.
В окружности с центром O проведены две параллельные хорды AB и CD. Окружности с диаметрами AB и CD пересекаются в точке P.
В окружность вписан прямоугольный треугольник ABC с гипотенузой AB. Пусть K – середина дуги BC, не содержащей точку A, N – середина отрезка AC, M – точка пересечения луча KN с окружностью. В точках A и C проведены касательные к окружности, которые пересекаются в точке E. Докажите, что
Окружности S1 и S2 пересекаются в точках M и N. Докажите, что если вершины A и C некоторого прямоугольника ABCD лежат на окружности S1, а вершины B и D – на окружности S2, то точка пересечения диагоналей прямоугольника лежит на прямой MN.
Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 401] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|