Страница:
<< 60 61 62 63 64
65 66 >> [Всего задач: 329]
|
|
Сложность: 4+ Классы: 9,10,11
|
Дана окружность, точка
A на ней и точка
M внутри нее.
Рассматриваются хорды
BC , проходящие через
M . Докажите, что окружности,
проходящие через середины сторон всех треугольников
ABC , касаются некоторой
фиксированной окружности.
|
|
Сложность: 4+ Классы: 9,10,11
|
Четырехугольник $ABCD$ описан около окружности $\omega$ с центром $I$. Прямые $AC$ и $BD$ пересекаются в точке $P$, $AB$ и $CD$ – в точке $E$, $AD$ и $BC$ – в точке $F$. Точка $K$ на описанной окружности треугольника $EIF$ такова, что $\angle IKP=90^{\circ}$. Луч $PK$ пересекает $\omega$ в точке $Q$. Докажите, что описанная окружность треугольника $EQF$ касается $\omega$.
|
|
Сложность: 5- Классы: 9,10,11
|
В параллелограмме
ABCD на диагонали
AC отмечена точка
K . Окружность
s1
проходит через точку
K и касается
прямых
AB и
AD , причём вторая точка пересечения
s1
с диагональю
AC лежит на отрезке
AK . Окружность
s2
проходит через точку
K и касается прямых
CB и
CD ,
причём вторая точка пересечения
s2
с диагональю
AC
лежит на отрезке
KC . Докажите, что при всех положениях
точки
K на диагонали
AC прямые, соединяющие центры окружностей
s1
и
s2
, будут параллельны между собой.
|
|
Сложность: 5- Классы: 9,10,11
|
Докажите, что в неравнобедренном треугольнике одна из окружностей, касающихся вписанной и описанной окружностей внутренним, а одной из вневписанных внешним образом, проходит через вершину треугольника.
В данный сегмент вписываются всевозможные пары касающихся
окружностей (рис.1). Для каждой пары окружностей через точку
касания проводится касающаяся их прямая. Докажите, что все эти
прямые проходят через одну точку.
Страница:
<< 60 61 62 63 64
65 66 >> [Всего задач: 329]