ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости дана окружность ω, точка A, лежащая внутри ω, и точка B, отличная от A. Рассматриваются всевозможные хорды XY, проходящие через точку A. Докажите, что центры описанных окружностей треугольников BXY лежат на одной прямой.

   Решение

Задачи

Страница: << 125 126 127 128 129 130 131 >> [Всего задач: 829]      



Задача 108184

Темы:   [ Вспомогательная окружность ]
[ Вписанные и описанные окружности ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

Автор: Сонкин М.

В равнобедренном треугольнике ABC  (AC = BC)  точка O – центр описанной окружности, точка I – центр вписанной окружности, а точка D на стороне BC такова, что прямые OD и BI перпендикулярны. Докажите, что прямые ID и AC параллельны.

Прислать комментарий     Решение

Задача 108213

Темы:   [ Правильный (равносторонний) треугольник ]
[ Доказательство от противного ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4-
Классы: 7,8,9

Автор: Лифшиц Ю.

Дан треугольник ABC с попарно различными сторонами. На его сторонах построены внешним образом правильные треугольники ABC1, BCA1 и CAB1. Докажите, что треугольник A1B1C1 не может быть правильным.

Прислать комментарий     Решение

Задача 108236

Темы:   [ ГМТ - прямая или отрезок ]
[ Угол между касательной и хордой ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4-
Классы: 8,9

Автор: Сонкин М.

Дан угол с вершиной B. Возьмём произвольную равнобедренную трапецию, боковые стороны которой лежат на сторонах данного угла. Через две противоположные её вершины проведём касательные к описанной около неё окружности. Через M обозначим точку пересечения этих касательных. Какую фигуру образуют все такие точки M?

Прислать комментарий     Решение

Задача 108242

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вспомогательная окружность ]
[ Три точки, лежащие на одной прямой ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4-
Классы: 8,9

На плоскости дана окружность ω, точка A, лежащая внутри ω, и точка B, отличная от A. Рассматриваются всевозможные хорды XY, проходящие через точку A. Докажите, что центры описанных окружностей треугольников BXY лежат на одной прямой.

Прислать комментарий     Решение

Задача 108636

Темы:   [ Две пары подобных треугольников ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4-
Классы: 8,9

В четырёхугольнике ABCD на сторонах BC и AD взяты точки R и T соответственно. Отрезки BT и AR пересекаются в точке P, отрезки CT и DR – в точке S. Оказалось, что PRST – параллелограмм. Докажите, что  AB || CD.

Прислать комментарий     Решение

Страница: << 125 126 127 128 129 130 131 >> [Всего задач: 829]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .