Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Две параболы с различными вершинами являются графиками квадратных трёхчленов со старшими коэффициентами p и q. Известно, что вершина каждой из парабол лежит на другой параболе. Чему может быть равно  p + q?

Вниз   Решение


Найти все такие тройки простых чисел x, y, z, что  19x − yz = 1995.

ВверхВниз   Решение


Стороны параллелограмма равны a и b , а острый угол между диагоналями равен α . Найдите площадь параллелограмма.

ВверхВниз   Решение



а) Из картона вырезали 7 выпуклых многоугольников и положили на стол так, что любые 6 из них можно прибить к столу двумя гвоздями, а все 7 нельзя. Приведите пример таких многоугольников и их расположения. (Многоугольники могут перекрываться.)

б) Из картона вырезали 8 выпуклых многоугольников и положили на стол так, что любые 7 из них можно прибить к столу двумя гвоздями, а все 8 — нельзя. Приведите пример таких многоугольников и их расположения. (Многоугольники могут перекрываться.)

ВверхВниз   Решение


Окружности σB, σC – вневписанные для треугольника ABC (касаются соответственно сторон AC и AB и продолжений двух других сторон). Окружность ωB симметрична σB относительно середины стороны AC, окружность ωC симметрична σC относительно середины стороны AB. Докажите, что прямая, проходящая через точки пересечения окружностей ωB и ωC, делит периметр треугольника ABC пополам.

ВверхВниз   Решение


Барон Мюнхгаузен рассказывал, что у него есть карта страны Оз с пятью городами. Каждые два города соединены дорогой, не проходящей через другие города. Каждая дорога пересекает на карте не более одной другой дороги (и не более одного раза). Дороги обозначены жёлтым или красным (по цвету кирпича, которым вымощены), и при обходе вокруг каждого города (по периметру) цвета выходящих из него дорог чередуются. Могут ли слова барона быть правдой?

ВверхВниз   Решение


Из вершины A квадрата ABCD со стороной 1 проведены два луча, пересекающие квадрат так, что вершина C лежит между лучами. Угол между лучами равен β. Из вершин B и D проведены перпендикуляры к лучам. Найдите площадь четырёхугольника с вершинами в основаниях этих перпендикуляров.

ВверхВниз   Решение


Треть роты осталась в лагере, а остальные бойцы уехали на стрельбы. Оставшиеся в лагере съели за обедом четверть приготовленной похлёбки, а вернувшиеся вечером со стрельб получили порции в полтора раза большие, чем давали за обедом. Сколько похлебки осталось для ротной собаки Найды?

ВверхВниз   Решение


Докажите, что в кубе $ABCDA_1B_1C_1D_1$ прямые $AC_1$ и $BD$ перпендикулярны.

ВверхВниз   Решение


Дан равносторонний треугольник АВС. Точка К – середина стороны АВ, точка М лежит на стороне ВС, причём  ВМ : МС = 1 : 3.  На стороне АС выбрана точка P так, что периметр треугольника РКМ – наименьший из возможных. В каком отношении точка Р делит сторону АС?

ВверхВниз   Решение


В треугольнике ABC даны длины сторон AB = $ \sqrt{2}$, BC = $ \sqrt{5}$ и AC = 3. Сравните величину угла BOC и 112, 5o, если O — центр вписанной в треугольник ABC окружности.

ВверхВниз   Решение


Автор: Сонкин М.

На стороне AB треугольника ABC выбрана точка D . Окружность, описанная около треугольника BCD , пересекает сторону AC в точке M , а окружность, описанная около треугольника ACD , пересекает сторону BC в точке N (точки M и N отличны от точки C ). Пусть O – центр описанной окружности треугольника CMN . Докажите, что прямая OD перпендикулярна стороне AB .

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 [Всего задач: 28]      



Задача 110752

Темы:   [ Построение треугольников по различным точкам ]
[ Биссектриса делит дугу пополам ]
[ Конкуррентность высот. Углы между высотами. ]
[ Вписанные и описанные окружности ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
Сложность: 4
Классы: 8,9,10

В остроугольном треугольнике отметили отличные от вершин точки пересечения описанной окружности с высотами, проведенными из двух вершин, и биссектрисой, проведенной из третьей вершины, после чего сам треугольник стерли. Восстановите его.


Прислать комментарий     Решение

Задача 109499

Темы:   [ Точка Торричелли ]
[ Симметрия помогает решить задачу ]
[ Свойства биссектрис, конкуррентность ]
[ Свойства симметрий и осей симметрии ]
[ Три прямые, пересекающиеся в одной точке ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Изогональное сопряжение ]
Сложность: 5-
Классы: 9,10,11

Стороны треугольника ABC видны из точки T под углами 120°.
Докажите, что прямые, симметричные прямым AT, BT и CT относительно прямых BC, CA и AB соответственно, пересекаются в одной точке.

Прислать комментарий     Решение

Задача 108246

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Ортогональная (прямоугольная) проекция ]
[ Вписанные и описанные окружности ]
[ Векторы помогают решить задачу ]
[ Вписанный угол равен половине центрального ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 5+
Классы: 9,10,11

Автор: Сонкин М.

На стороне AB треугольника ABC выбрана точка D . Окружность, описанная около треугольника BCD , пересекает сторону AC в точке M , а окружность, описанная около треугольника ACD , пересекает сторону BC в точке N (точки M и N отличны от точки C ). Пусть O – центр описанной окружности треугольника CMN . Докажите, что прямая OD перпендикулярна стороне AB .
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 [Всего задач: 28]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .