ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Сонкин М.

На стороне AB треугольника ABC выбрана точка D . Окружность, описанная около треугольника BCD , пересекает сторону AC в точке M , а окружность, описанная около треугольника ACD , пересекает сторону BC в точке N (точки M и N отличны от точки C ). Пусть O – центр описанной окружности треугольника CMN . Докажите, что прямая OD перпендикулярна стороне AB .

   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 98]      



Задача 66984

Темы:   [ ГМТ с ненулевой площадью ]
[ Признаки и свойства касательной ]
[ Теория алгоритмов (прочее) ]
[ Векторы помогают решить задачу ]
[ Гомотетия помогает решить задачу ]
Сложность: 5
Классы: 10,11

Автор: Дидин М.

На аттракционе «Весёлая парковка» у машинки только 2 положения руля: «вправо» и «совсем вправо». В зависимости от положения руля, машинка едет по дуге радиуса $r_1$ или $r_2$. Машинка выехала из точки $A$ на север и проехала расстояние $l$, повернув при этом на угол $\alpha<2\pi$. Где она могла оказаться (найдите ГМТ – концов возможных траекторий)?
Прислать комментарий     Решение


Задача 108246

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Ортогональная (прямоугольная) проекция ]
[ Вписанные и описанные окружности ]
[ Векторы помогают решить задачу ]
[ Вписанный угол равен половине центрального ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 5+
Классы: 9,10,11

Автор: Сонкин М.

На стороне AB треугольника ABC выбрана точка D . Окружность, описанная около треугольника BCD , пересекает сторону AC в точке M , а окружность, описанная около треугольника ACD , пересекает сторону BC в точке N (точки M и N отличны от точки C ). Пусть O – центр описанной окружности треугольника CMN . Докажите, что прямая OD перпендикулярна стороне AB .
Прислать комментарий     Решение


Задача 53528

Темы:   [ Ортоцентр и ортотреугольник ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Гомотетия помогает решить задачу ]
[ Средняя линия треугольника ]
[ Векторы помогают решить задачу ]
Сложность: 3+
Классы: 8,9

Докажите, что расстояние от вершины треугольника до точки пересечения высот вдвое больше, чем расстояние от центра описанной окружности до противоположной стороны.

Прислать комментарий     Решение

Задача 57075

Темы:   [ Правильные многоугольники ]
[ Раскраски ]
[ Поворот помогает решить задачу ]
[ Принцип крайнего (прочее) ]
[ Векторы помогают решить задачу ]
Сложность: 5
Классы: 9

Вершины правильного n-угольника окрашены в несколько цветов так, что точки каждого цвета служат вершинами правильного многоугольника.
Докажите, что среди этих многоугольников найдутся два равных.

Прислать комментарий     Решение

Задача 67156

Темы:   [ Центральная симметрия (прочее) ]
[ Вписанные и описанные окружности ]
[ Гомотетия помогает решить задачу ]
[ Поворот помогает решить задачу ]
[ Векторы помогают решить задачу ]
Сложность: 5
Классы: 8,9,10,11

На сторонах правильного девятиугольника $ABCDEFGHI$ во внешнюю сторону построили треугольники $XAB$, $YBC$, $ZCD$ и $TDE$. Известно, что углы $X$, $Y$, $Z$, $T$ этих треугольников равны $20^{\circ}$ каждый, а среди углов $XAB$, $YBC$, $ZCD$ и $TDE$ каждый следующий на $20^{\circ}$ больше предыдущего. Докажите, что точки $X$, $Y$, $Z$, $T$ лежат на одной окружности.

Прислать комментарий     Решение


Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 98]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .