ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Расстояния от центра описанной окружности остроугольного
треугольника до его сторон равны da, db и dc. Докажите,
что
da + db + dc = R + r.
Составьте уравнение плоскости, проходящей через середину отрезка с концами в точках P(-1;2;5) и Q(3;-4;1) перпендикулярно прямой, проходящей через точки A(0;-2;-1) и B(3;2;-1) . Точки M и N таковы, что
AM : BM : CM = AN : BN : CN. Докажите, что прямая MN проходит через
центр O описанной окружности треугольника ABC.
Окружность с центром I касается сторон AB, BC, CA треугольника ABC в точках C1, A1, B1. Прямые AI, CI, B1I пересекают A1C1 в точках X, Y, Z соответственно. Докажите, что ∠YB1Z = ∠XB1Z. Найдите острый угол между плоскостями 2x - y - 3z + 5 = 0 и x + y - 2 = 0 . Робот придумал шифр для записи слов: заменил некоторые буквы алфавита однозначными или двузначными числами, используя только цифры 1, 2 и 3 (разные буквы он заменял разными числами). Сначала он записал шифром сам себя: РОБОТ = 3112131233. Зашифровав слова КРОКОДИЛ и БЕГЕМОТ, он с удивлением заметил, что числа вышли совершенно одинаковыми! Потом Робот записал слово МАТЕМАТИКА. Напишите число, которое у него получилось. Замените в слове МАТЕМАТИКА буквы цифрами и знаками сложения и вычитания так, чтобы получилось числовое выражение, равное 2014. На клетчатой бумаге был нарисован лабиринт: квадрат 5×5 (внешняя стена) с выходом шириной в одну клетку, а также внутренние стенки, идущие по линиям сетки. На рисунке мы скрыли от вас все внутренние стенки. Начертите, как они могли располагаться, зная, что числа, стоящие в клетках, показывают наименьшее количество шагов, за которое можно было покинуть лабиринт, стартовав из этой клетки (шаг делается в соседнюю по стороне клетку, если они не разделены стенкой). Достаточно одного примера, пояснения не нужны. Разрежьте фигуру на рисунке на три равные части (не обязательно по линиям сетки). (Равными называются части, которые можно совместить, наложив друг на друга. При этом части можно поворачивать и переворачивать.) Один квадрат вписан в окружность, а другой квадрат описан около той же окружности так, что его вершины лежат на продолжениях сторон первого (см. рисунок). Найдите угол между сторонами этих квадратов. Мама испекла пирожки – три с рисом, три с капустой и один с вишней – и выложила их на блюдо по кругу (см. рис.). Потом поставила блюдо в микроволновку подогреть. На вид все пирожки одинаковые. Маша знает, как они лежали, но не знает, как повернулось блюдо. Она хочет съесть пирожок с вишней, а остальные считает невкусными. Как Маше наверняка добиться этого, надкусив как можно меньше невкусных пирожков? Натуральные числа от 1 до 2014 как-то разбили на пары, числа в каждой из пар сложили, а полученные 1007 сумм перемножили. На сторонах треугольника ABC вовне построены квадраты ABB1A2, BCC1B2 и CAA1C2. На отрезках A1A2 и B1B2 также во внешнюю сторону от треугольников AA1A2 и BB1B2 построены квадраты A1A2A3A4 и B1B2B3B4. Докажите, что A3B4 || AB.
В остроугольном треугольнике ABC высоты пересекаются в точке H, а медианы — в точке O. Биссектриса угла A проходит через середину отрезка OH. Найдите площадь треугольника ABC, если BC = 2, а разность углов B и C равна 30o.
|
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 70]
Ma, Mb, Mc – середины сторон, Ha, Hb, Hc – основания высот треугольника ABC площади S.
Углы треугольника ABC удовлетворяют соотношению sin²A + sin²B + sin²C = 1.
В остроугольном треугольнике $ABC$ $CM$ – медиана, $P$ – проекция ортоцентра $H$ на биссектрису угла $C$. Докажите, что $MP$ делит отрезок $CH$ пополам.
Найдите геометрическом место ортоцентров (точек пересечения высот) всевозможных треугольников, вписанных в данную окружность.
В остроугольном треугольнике ABC высоты пересекаются в точке H, а медианы — в точке O. Биссектриса угла A проходит через середину отрезка OH. Найдите площадь треугольника ABC, если BC = 2, а разность углов B и C равна 30o.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 70]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке