Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Расстояния от центра описанной окружности остроугольного треугольника до его сторон равны da, db и dc. Докажите, что  da + db + dc = R + r.

Вниз   Решение


Составьте уравнение плоскости, проходящей через середину отрезка с концами в точках P(-1;2;5) и Q(3;-4;1) перпендикулярно прямой, проходящей через точки A(0;-2;-1) и B(3;2;-1) .

ВверхВниз   Решение


Точки M и N таковы, что  AM : BM : CM = AN : BN : CN. Докажите, что прямая MN проходит через центр O описанной окружности треугольника ABC.

ВверхВниз   Решение


Окружность с центром I касается сторон AB, BC, CA треугольника ABC в точках C1, A1, B1. Прямые AI, CI, B1I пересекают A1C1 в точках X, Y, Z соответственно. Докажите, что  ∠YB1Z = ∠XB1Z.

ВверхВниз   Решение


Найдите острый угол между плоскостями 2x - y - 3z + 5 = 0 и x + y - 2 = 0 .

ВверхВниз   Решение


Робот придумал шифр для записи слов: заменил некоторые буквы алфавита однозначными или двузначными числами, используя только цифры 1, 2 и 3 (разные буквы он заменял разными числами). Сначала он записал шифром сам себя:  РОБОТ = 3112131233.  Зашифровав слова КРОКОДИЛ и БЕГЕМОТ, он с удивлением заметил, что числа вышли совершенно одинаковыми! Потом Робот записал слово МАТЕМАТИКА. Напишите число, которое у него получилось.

ВверхВниз   Решение


Замените в слове МАТЕМАТИКА буквы цифрами и знаками сложения и вычитания так, чтобы получилось числовое выражение, равное 2014.
(Одинаковыми буквами обозначены одинаковые цифры или знаки, разными – разные. Достаточно привести пример.)

ВверхВниз   Решение


На клетчатой бумаге был нарисован лабиринт: квадрат 5×5 (внешняя стена) с выходом шириной в одну клетку, а также внутренние стенки, идущие по линиям сетки. На рисунке мы скрыли от вас все внутренние стенки. Начертите, как они могли располагаться, зная, что числа, стоящие в клетках, показывают наименьшее количество шагов, за которое можно было покинуть лабиринт, стартовав из этой клетки (шаг делается в соседнюю по стороне клетку, если они не разделены стенкой). Достаточно одного примера, пояснения не нужны.

ВверхВниз   Решение


Разрежьте фигуру на рисунке на три равные части (не обязательно по линиям сетки). (Равными называются части, которые можно совместить, наложив друг на друга. При этом части можно поворачивать и переворачивать.)

ВверхВниз   Решение


Один квадрат вписан в окружность, а другой квадрат описан около той же окружности так, что его вершины лежат на продолжениях сторон первого (см. рисунок). Найдите угол между сторонами этих квадратов.

ВверхВниз   Решение


Мама испекла пирожки – три с рисом, три с капустой и один с вишней – и выложила их на блюдо по кругу (см. рис.). Потом поставила блюдо в микроволновку подогреть. На вид все пирожки одинаковые. Маша знает, как они лежали, но не знает, как повернулось блюдо. Она хочет съесть пирожок с вишней, а остальные считает невкусными. Как Маше наверняка добиться этого, надкусив как можно меньше невкусных пирожков?

ВверхВниз   Решение


Натуральные числа от 1 до 2014 как-то разбили на пары, числа в каждой из пар сложили, а полученные 1007 сумм перемножили.
Мог ли результат оказаться квадратом натурального числа?

ВверхВниз   Решение


На сторонах треугольника ABC вовне построены квадраты ABB1A2, BCC1B2 и CAA1C2. На отрезках A1A2 и B1B2 также во внешнюю сторону от треугольников AA1A2 и BB1B2 построены квадраты A1A2A3A4 и B1B2B3B4. Докажите, что  A3B4 || AB.

ВверхВниз   Решение


В остроугольном треугольнике ABC высоты пересекаются в точке H, а медианы — в точке O. Биссектриса угла A проходит через середину отрезка OH. Найдите площадь треугольника ABC, если BC = 2, а разность углов B и C равна 30o.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 70]      



Задача 107609

Темы:   [ Прямая Эйлера и окружность девяти точек ]
[ Средняя линия треугольника ]
[ Медиана, проведенная к гипотенузе ]
[ Отношение площадей подобных треугольников ]
Сложность: 4-
Классы: 8,9,10

Ma, Mb, Mc – середины сторон, Ha, Hb, Hc – основания высот треугольника ABC площади S.
Доказать, что из отрезков MaHb, MbHc, McHa можно составить треугольник, найти его площадь.

Прислать комментарий     Решение

Задача 57004

Темы:   [ Прямая Эйлера и окружность девяти точек ]
[ Взаимное расположение двух окружностей ]
[ Применение тригонометрических формул (геометрия) ]
[ Векторы помогают решить задачу ]
Сложность: 4
Классы: 8,9

Углы треугольника ABC удовлетворяют соотношению  sin²A + sin²B + sin²C = 1.
Докажите, что его описанная окружность и окружность девяти точек пересекаются под прямым углом.

Прислать комментарий     Решение

Задача 67359

Тема:   [ Прямая Эйлера и окружность девяти точек ]
Сложность: 4
Классы: 8,9,10,11

В остроугольном треугольнике $ABC$ $CM$ – медиана, $P$ – проекция ортоцентра $H$ на биссектрису угла $C$. Докажите, что $MP$ делит отрезок $CH$ пополам.
Прислать комментарий     Решение


Задача 108021

Темы:   [ Прямая Эйлера и окружность девяти точек ]
[ Гомотетия: построения и геометрические места точек ]
[ Ортоцентр и ортотреугольник ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 8,9,10

Найдите геометрическом место ортоцентров (точек пересечения высот) всевозможных треугольников, вписанных в данную окружность.

Прислать комментарий     Решение

Задача 108487

Темы:   [ Прямая Эйлера и окружность девяти точек ]
[ Теорема синусов ]
[ Вспомогательная окружность ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 4
Классы: 8,9

В остроугольном треугольнике ABC высоты пересекаются в точке H, а медианы — в точке O. Биссектриса угла A проходит через середину отрезка OH. Найдите площадь треугольника ABC, если BC = 2, а разность углов B и C равна 30o.

Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 70]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .