Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

В первый день Маша собрала на 25% грибов меньше, чем Вася, а во второй – на 20% больше, чем Вася. За два дня Маша собрала грибов на 10% больше, чем Вася. Какое наименьшее количество грибов они могли собрать вместе?

Вниз   Решение


Непрерывная функция f(x) такова, что для всех действительных x выполняется неравенство: f(x2)-(f(x))2 . Верно ли, что функция f(x) обязательно имеет точки экстремума?

ВверхВниз   Решение


Найдите все пары чисел x,y (0;) , удовлетворяющие равенству sin x+ sin y= sin(xy) .

ВверхВниз   Решение


Окружность с центром в точке M(3;1) проходит через начало координат. Составьте уравнение окружности.

ВверхВниз   Решение


Изначально на доске были написаны одночленs  1, x, x², ..., xn.  Договорившись заранее, k мальчиков каждую минуту одновременно вычисляли каждый сумму каких-то двух многочленов, написанных на доске, и результат дописывали на доску. Через m минут на доске были написаны, среди прочих, многочлены  S1 = 1 + x,  S2 = 1 + x + x²,  S3 = 1 + x + x² + x3,  ...,  Sn = 1 + x + x² + ... + xn.  Докажите, что  

ВверхВниз   Решение


Даны точки A(0;0), B(- 2;1), C(3;3), D(2; - 1) и окружность (x - 1)2 + (y + 3)2 = 25. Выясните, где расположены эти точки: на окружности, внутри или вне окружности.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 22]      



Задача 66580

Темы:   [ Окружности (прочее) ]
[ Метрические соотношения ]
[ Геометрические неравенства ]
[ Построения с помощью вычислений ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Мухин Д.Г.

Митя купил на день рождения круглый торт диаметром 36 сантиметров и 13 тоненьких свечек. Мите не нравится, когда свечки стоят слишком близко, поэтому он хочет поставить их на расстоянии не меньше 10 сантиметров друг от друга. Поместятся ли все свечки на торте?
Прислать комментарий     Решение


Задача 67433

Темы:   [ Окружности (прочее) ]
[ Описанные четырехугольники ]
Сложность: 4
Классы: 9,10,11

Даны две равные окружности $\omega_1$ и $\omega_2$ с центрами $O_1$ и $O_2$. На отрезке $O_1O_2$ взяты точки $X$ и $Y$ так, что $O_1Y = O_2X$. Точки $A$ и $B$ лежат на $\omega_1$, и прямая $AB$ проходит через $X$. Точки $C$ и $D$ лежат на $\omega_2$, и прямая $CD$ проходит через $Y$. Докажите, что существует окружность, касающаяся прямых $AO_1$, $BO_1$, $CO_2$ и $DO_2$.

Прислать комментарий     Решение

Задача 52609

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Окружности (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 2+
Классы: 8,9

Угловая величина дуги AB равна  α < 90°.  На продолжении радиуса OA отложен отрезок AC, равный хорде AB, и точка C соединена с B. Найдите угол ACB.

Прислать комментарий     Решение

Задача 52610

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Окружности (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 2+
Классы: 8,9

В треугольнике ABC угол C прямой. Из центра C радиусом AC описана дуга ADE, пересекающая гипотенузу в точке D, а катет CB – в точке E.
Найдите угловые величины дуг AD и DE, если  ∠B = 40°.

Прислать комментарий     Решение

Задача 108543

Темы:   [ Метод координат на плоскости ]
[ Окружности (прочее) ]
Сложность: 2+
Классы: 8,9,10

Даны точки A(0;0), B(- 2;1), C(3;3), D(2; - 1) и окружность (x - 1)2 + (y + 3)2 = 25. Выясните, где расположены эти точки: на окружности, внутри или вне окружности.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 22]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .