ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Вписанный угол
>>
Отрезок, видимый из двух точек под одним углом
|
|||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Окружность с центром D проходит через вершины A, B и центр O вневписанной окружности треугольника ABC , касающейся его стороны BC и продолжений сторон AB и AC. Докажите, что точки A, B, C и D лежат на одной окружности. Решение |
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 83]
Внутри параллелограмма ABCD выбрана точка O, причём ∠OAD = ∠OCD. Докажите, что ∠OBC = ∠ODC.
Окружность с центром D проходит через вершины A, B и центр O вневписанной окружности треугольника ABC , касающейся его стороны BC и продолжений сторон AB и AC. Докажите, что точки A, B, C и D лежат на одной окружности.
На стороне AC треугольника ABC отметили произвольную точку D. Точки E и F симметричны точке D относительно биссектрис углов A и C соответственно. Докажите, что середина отрезка EF лежит на прямой A0C0, где A0 и C0 – точки касания вписанной окружности треугольника ABC со сторонами BC и AB соответственно.
На биссектрисе данного угла фиксирована точка. Рассматриваются всевозможные равнобедренные треугольники, у которых вершина находится в этой точке, а концы оснований лежат на разных сторонах этого угла. Найти геометрическое место середин оснований таких треугольников.
Хорда CD окружности с центром O перпендикулярна её диаметру AB, а хорда AE делит пополам радиус OC.
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 83] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|