ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите следующие свойства подходящих дробей: Окружность, построенная на стороне треугольника как на диаметре, проходит через середину другой стороны. Докажите, что треугольник равнобедренный. Для натуральных чисел a > b > 1 определим последовательность x1, x2, ... формулой
Из точки M на плоскость α опущен перпендикуляр
MH длины 3 и проведены две наклонные, составляющие
с перпендикуляром углы по 30o . Угол между наклонными
равен 60o .
а) Найдите расстояние между основаниями A и B наклонных.
б) На отрезке AB как на катете в плоскости α построен
прямоугольный треугольник ABC (угол A – прямой). Найдите
объём пирамиды MABC , зная, что cos В треугольнике даны два угла α и β и радиус R описанной окружности. Найдите высоту, опущенную из вершины третьего угла треугольника. Вневписанные окружности касаются сторон AB и AC треугольника ABC в точках P и Q соответственно. Точка L – середина PQ, точка M – середина BC. Точки L1 и L2 симметричны точке L относительно середин отрезков BM и CM соответственно. Докажите, что L1P = L2Q. |
Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 241]
На плоскости даны десять точек таких, что любые четыре лежат на контуре некоторого квадрата. Верно ли, что все десять лежат на контуре некоторого квадрата?
Вневписанные окружности касаются сторон AB и AC треугольника ABC в точках P и Q соответственно. Точка L – середина PQ, точка M – середина BC. Точки L1 и L2 симметричны точке L относительно середин отрезков BM и CM соответственно. Докажите, что L1P = L2Q.
Дан правильный 2n-угольник.
Найдите все углы α , для которых набор чисел sinα , sin2α , sin3α совпадает с набором cosα , cos2α , cos3α .
Пусть O – центр правильного треугольника ABC. Из произвольной точки P плоскости опустили перпендикуляры на стороны треугольника или их продолжения. Обозначим через M точку пересечения медиан треугольника с вершинами в основаниях этих перпендикуляров. Докажите, что M – середина отрезка PO.
Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 241]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке