ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Точки K и P симметричны основанию H высоты BH треугольника ABC относительно его сторон AB и BC.
Докажите, что точки пересечения отрезка KP со сторонами AB и BC (или их продолжениями) – основания высот треугольника ABC.

Вниз   Решение


Дан острый угол ABC . На стороне BC отложены отрезки BD= 4 см и BE= 14 см. Найти на стороне BA такие две точки M и N , чтобы MN=3 см и DMN= MNE .

Вверх   Решение

Задачи

Страница: << 103 104 105 106 107 108 109 >> [Всего задач: 563]      



Задача 105214

Темы:   [ Прямая Симсона ]
[ Вписанные и описанные окружности ]
[ Гомотетия помогает решить задачу ]
[ Свойства симметрий и осей симметрии ]
Сложность: 5
Классы: 8,9,10

Дан треугольник ABC и точки P и Q, лежащие на его описанной окружности. Точку P отразили относительно прямой BC и получили точку P_a. Точку пересечения прямых QP_a и BC обозначим A'. Точки B' и C' строятся аналогично. Докажите, что точки A', B' и C' лежат на одной прямой.
Прислать комментарий     Решение


Задача 108981

Темы:   [ Элементарные (основные) построения циркулем и линейкой ]
[ Перенос помогает решить задачу ]
[ Параллельный перенос. Построения и геометрические места точек ]
[ Симметрия и построения ]
Сложность: 5
Классы: 8,9

Дан острый угол ABC . На стороне BC отложены отрезки BD= 4 см и BE= 14 см. Найти на стороне BA такие две точки M и N , чтобы MN=3 см и DMN= MNE .
Прислать комментарий     Решение


Задача 110781

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Окружность, вписанная в угол ]
[ Свойства симметрий и осей симметрии ]
[ Вписанные и описанные окружности ]
[ Изогональное сопряжение ]
Сложность: 5+
Классы: 10

Прямые, содержащие медианы треугольника ABC, вторично пересекают его описанную окружность в точках A1, B1, C1. Прямые, проходящие через A, B, C и параллельные противоположным сторонам, пересекают ее же в точках A2, B2, C2. Докажите, что прямые A1A2, B1B2, C1C2 пересекаются в одной точке.

Прислать комментарий     Решение

Задача 52859

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол равен половине центрального ]
[ Четыре точки, лежащие на одной окружности ]
[ Три точки, лежащие на одной прямой ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3+
Классы: 8,9

Точки K и P симметричны основанию H высоты BH треугольника ABC относительно его сторон AB и BC.
Докажите, что точки пересечения отрезка KP со сторонами AB и BC (или их продолжениями) – основания высот треугольника ABC.

Прислать комментарий     Решение

Задача 65029

Темы:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Вписанные и описанные окружности ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC  ∠A = 60°.  Серединный перпендикуляр к отрезку AB пересекает прямую AC в точке C1. Серединный перпендикуляр к отрезку AC пересекает прямую AB в точке B1. Докажите, что прямая B1C1 касается вписанной окружности треугольника ABC.

Прислать комментарий     Решение

Страница: << 103 104 105 106 107 108 109 >> [Всего задач: 563]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .