ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В треугольнике провести прямую, параллельную одной из сторон, так, чтобы площадь отсечённого треугольника равнялась 1/k площади данного треугольника (k – натуральное число), а оставшуюся часть треугольника разделить прямыми на p равновеликих частей. (Предполагается, что у нас есть отрезок единичной длины.) Решение |
Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 460]
В треугольнике MNP угол N прямой, MN = 6, NP = 3. Точка K лежит на стороне MP, A и B — точки пересечения медиан соответственно в треугольниках MNK и KNP. Найдите площадь треугольника NAB.
На стороне AB треугольника ABC взята точка P, отличная от точек A и B, а на сторонах BC и AC – точки Q и R соответственно, причём четырёхугольник PQCR – параллелограмм. Пусть отрезки AQ и PR пересекаются в точке M, а отрезки BR и PQ – в точке N. Докажите, что сумма площадей треугольников AMP и BNP равна площади треугольника CQR.
В треугольнике провести прямую, параллельную одной из сторон, так, чтобы площадь отсечённого треугольника равнялась 1/k площади данного треугольника (k – натуральное число), а оставшуюся часть треугольника разделить прямыми на p равновеликих частей. (Предполагается, что у нас есть отрезок единичной длины.)
Длины сторон треугольника образуют арифметическую прогрессию.
Точка M делит среднюю линию треугольника ABC, параллельную стороне BC, на отрезки, один из которых в три раза длиннее другого. Точка N делит сторону BC на отрезки, один из которых в три раза длиннее другого. В каком отношении прямая MN делит площадь треугольника ABC?
Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 460] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|