ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 462]
Длины сторон треугольника образуют арифметическую прогрессию.
Точка M делит среднюю линию треугольника ABC, параллельную стороне BC, на отрезки, один из которых в три раза длиннее другого. Точка N делит сторону BC на отрезки, один из которых в три раза длиннее другого. В каком отношении прямая MN делит площадь треугольника ABC?
На сторонах BC, AC и AB треугольника ABC расположены точки A1, B1 и C1 соответственно, причём BA1 : A1C = CB1 : B1A = AC1 : C1B = 1 : 3. Найдите площадь треугольника, образованного пересечениями прямых AA1, BB1 и CC1, если известно, что площадь треугольника ABC равна 1.
Внутри прямоугольного треугольника АВС выбрана произвольная точка Р, из которой опущены перпендикуляры PK и РМ на катеты АС и ВС соответственно. Прямые АР и ВР пересекают катеты в точках A' и B' соответственно. Известно, что SAPB' : SKPB' = m. Найдите SMPA' : SBPA'.
В треугольнике ABC известно, что AB = 6, BC = 9, AC = 10. Биссектриса угла B пересекает сторону AC в точке M. На отрезке BM взята точка O так, что BO : OM = 3 : 1. Площадь какого из треугольников AOB, BOC или AOC является наименьшей?
Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 462]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке