Страница:
<< 6 7 8 9 10 11
12 >> [Всего задач: 60]
|
|
Сложность: 5 Классы: 9,10,11
|
Многочлен P(x) со старшим коэффициентом, равным 1, обладает тем свойством, что среди значений, принимаемых им при натуральных значениях аргумента, встречаются все числа вида 2m с натуральным m. Докажите, что этот многочлен – первой степени.
|
|
Сложность: 5 Классы: 10,11
|
Докажите, что если числа a1, a2, ..., am отличны от нуля и для любого целого k = 0, 1, ..., n (n < m – 1) выполняется равенство:
a1 + a2·2k + a3·3k + ... + ammk = 0, то в последовательности a1, a2, ..., am есть по крайней мере n + 1 пара соседних чисел, имеющих разные знаки.
Дан многочлен x(x + 1)(x + 2)(x + 3). Найти его наименьшее значение.
|
|
Сложность: 3+ Классы: 10,11
|
X – число, большее 2. Некто пишет на карточках числа:
1, X, X², X³, X4, ..., Xk (каждое число только на одной карточке). Потом часть карточек он кладёт себе в правый карман, часть в левый, остальные выбрасывает. Докажите, что сумма чисел в правом кармане не может быть равна сумме чисел в левом.
|
|
Сложность: 3+ Классы: 7,8,9,10
|
Известно, что уравнение ax5 + bx4 + c = 0 имеет три различных корня. Докажите, что уравнение cx5 + bx + a = 0 также имеет три различных корня.
Страница:
<< 6 7 8 9 10 11
12 >> [Всего задач: 60]