ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Дана пирамида ABCD . Сфера касается плоскостей DAB , DAC и DBC в
точках K , L и M соответственно. При этом точка K находится на
стороне AB , точка L – на стороне AC , точка M – на стороне BC .
Известно, что радиус сферы равен 3, В классе все увлекаются математикой или биологией. Сколько человек в классе, если математикой занимаются 15 человек, биологией – 20, а математикой и биологией – 10? Какое максимальное число ладей можно расставить в кубе 8×8×8, чтобы они не били друг друга? В некотором царстве живут маги, чародеи и волшебники. Про них известно следующее: во-первых, не все маги являются чародеями, во-вторых, если волшебник не является чародеем, то он не маг. Правда ли, что не все маги -- волшебники? а) Какое максимальное количество слонов можно расставить на
доске 1000 на 1000 так, чтобы они не били друг друга?
В треугольной пирамиде ABCD известно, что AB Петя тратит ⅓ своего времени на игру в футбол, ⅕ – на учебу в школе, ⅙ – на просмотр кинофильмов, 1/70 – на решение олимпиадных задач и ⅓ – на сон. Можно ли так жить? Давным-давно девять одинаковых книг стоили 11 рублей с копейками, а тринадцать таких книг стоили 15 рублей с копейками. Для некоторого многочлена существует бесконечное множество его значений, каждое из которых многочлен принимает по крайней мере в двух целочисленных точках. Докажите, что существует не более одного значения, которое многочлен принимает ровно в одной целой точке. Знайка пишет на доске 10 чисел, потом Незнайка дописывает ещё 10 чисел, причём все 20 чисел должны быть положительными и различными. Мог ли Знайка написать такие числа, чтобы потом гарантированно суметь составить 10 квадратных трёхчленов вида x² + px + q, среди коэффициентов p и q которых встречались бы все записанные числа, и (действительные) корни этих трёхчленов принимали ровно 11 различных значений? Даны многочлены f(x) и g(x) с целыми неотрицательными коэффициентами, m – наибольший коэффициент многочлена f. Известно, что для некоторых натуральных чисел a < b имеют место равенства f(a) = g(a) и f(b) = g(b). Докажите, что если b > m, то многочлены f и g совпадают. Многочлен P(x) с действительными коэффициентами таков, что уравнение P(m) + P(n) = 0 имеет бесконечно много решений в целых числах m и n. Внутри окружности расположен выпуклый четырехугольник, продолжения сторон которого пересекают ее в точках A1 , A2 , B1 , B2 , C1 , C2 , D1 и D2 960. Докажите, что если A1B2=B1C2=C1D2=D1A2 , то четырехугольник, образованный прямыми A1A2 , B1B2 , C1C2 , D1D2 , можно вписать в окружность. |
Страница: << 104 105 106 107 108 109 110 >> [Всего задач: 1282]
Известно, что трапеция KLMN — равнобедренная,
KN
Внутри окружности расположен выпуклый четырехугольник, продолжения сторон которого пересекают ее в точках A1 , A2 , B1 , B2 , C1 , C2 , D1 и D2 960. Докажите, что если A1B2=B1C2=C1D2=D1A2 , то четырехугольник, образованный прямыми A1A2 , B1B2 , C1C2 , D1D2 , можно вписать в окружность.
В треугольнике ABC известно, что AB = 20, AC = 24. Известно также, что вершина C, центр вписанного в треугольник ABC круга и точка пересечения биссектрисы угла A со стороной BC лежат на окружности, центр которой лежит на стороне AC. Найдите радиус описанной около треугольника ABC окружности.
Пусть $M$ – середина гипотенузы $AB$ прямоугольного треугольника $ABC$. Окружность, проходящая через $C$ и $M$, пересекает прямые $BC$ и $AC$ в точках $P$ и $Q$ соответственно. Пусть $c_1, c_2$ – окружности с центрами $P$, $Q$ и радиусами $BP$, $AQ$ соответственно. Докажите, что $c_1$, $c_2$ и описанная окружность треугольника $ABC$ проходят через одну точку.
Окружность $\omega$ касается прямых $a$ и $b$ в точках $A$ и $B$ соответственно. Произвольная касательная к $\omega$ пересекает $a$ и $b$ в точках $X$ и $Y$ соответственно. Точки $X'$ и $Y'$ симметричны точкам $X$ и $Y$ относительно $A$ и $B$ соответственно. Найдите геометрическое место проекций центра окружности на $X'Y'$.
Страница: << 104 105 106 107 108 109 110 >> [Всего задач: 1282]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке