ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Высоты AA1, BB1, CC1 и DD1 тетраэдра ABCD пересекаются в центре H сферы, вписанной в тетраэдр A1B1C1D1.
Докажите, что тетраэдр ABCD – правильный.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]      



Задача 109556

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Ортоцентр и ортотреугольник ]
[ Правильный тетраэдр ]
[ Признаки равенства прямоугольных треугольников ]
[ Вспомогательные подобные треугольники ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 5-
Классы: 10,11

Высоты AA1, BB1, CC1 и DD1 тетраэдра ABCD пересекаются в центре H сферы, вписанной в тетраэдр A1B1C1D1.
Докажите, что тетраэдр ABCD – правильный.

Прислать комментарий     Решение

Задача 109643

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Развертка помогает решить задачу ]
[ Теорема о трех перпендикулярах ]
[ Правильный тетраэдр ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
[ Замечательные точки и линии в треугольнике (прочее) ]
Сложность: 5-
Классы: 10,11

Сфера, вписанная в тетраэдр, касается одной из его граней в точке пересечения биссектрис, другой – в точке пересечения высот, третьей – в точке пересечения медиан. Докажите, что тетраэдр правильный.

Прислать комментарий     Решение

Задача 103941

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Применение проективных преобразований, сохраняющих сферу ]
Сложность: 5
Классы: 10,11

Сфера, вписанная в тетраэдр ABCD, касается его граней в точках A', B', C', D'. Отрезки AA' и BB' пересекаются, и точка их пересечения лежит на вписанной сфере. Доказать, что отрезки CC' и DD' тоже пересекаются на вписанной сфере.

Прислать комментарий     Решение

Задача 79564

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Касательные к сферам ]
[ Вспомогательная раскраска (прочее) ]
[ Многогранные углы ]
Сложность: 5+
Классы: 10,11

На рёбрах произвольного тетраэдра выбрано по точке. Через каждую тройку точек, лежащих на рёбрах с общей вершиной, проведена плоскость. Докажите, что если три из четырёх проведённых плоскостей касаются вписанного в тетраэдр шара, то и четвёртая плоскость также его касается.
Прислать комментарий     Решение


Задача 87126

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Сфера, вписанная в тетраэдр ]
Сложность: 3
Классы: 8,9

Около шара объёма V описана правильная треугольная пирамида. Каков наименьший возможный объём этой пирамиды?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .