ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Цифры 0, 1, ..., 9 разбиты на несколько непересекающихся групп. Из цифр каждой группы составляются всевозможные числа, для записи каждого из которых все цифры группы используются ровно один раз (учитываются и записи, начинающиеся с нуля). Все полученные числа расположили в порядке возрастания и k-му числу поставили в соответствие k-ю букву алфавита АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯ. Оказалось, что каждой букве соответствует число и каждому числу соответствует некоторая буква. Шифрование сообщения осуществляется заменой каждой буквы соответствующим ей числом. Если ненулевое число начинается с нуля, то при шифровании этот нуль не выписывается. Восстановите сообщение 873146507381 и укажите таблицу замены букв числами.

Вниз   Решение


Дан треугольник ABC. Окружность ω касается описанной окружности Ω треугольника ABC в точке A, пересекает сторону AB в точке K, а сторону BC – в точке M. Касательная CL к окружности ω такова, что отрезок KL пересекает сторону BC в точке T. Докажите, что отрезок BT равен по длине касательной, проведённой из точки B к ω.

ВверхВниз   Решение


Дан угол ABC и прямая l . Параллельно прямой l с помощью циркуля и линейки проведите прямую, на которой стороны угла ABC высекают отрезок, равный данному.

ВверхВниз   Решение


В прямоугольном треугольнике ABC  (∠B = 90°)  проведена высота BH. Окружность, вписанная в треугольник ABH, касается сторон AB, AH в точках H1, B1 соответственно; окружность, вписанная в треугольник CBH, касается сторон CB, CH в точках H2, B2 соответственно. Пусть O – центр описанной окружности треугольника H1BH2. Докажите, что  OB1 = OB2.

ВверхВниз   Решение


На катете AC прямоугольного треугольника ABC как на диаметре построена окружность, пересекающая гипотенузу AB в точке K.
Найдите CK, если  AC = 2  и  ∠A = 30°.

ВверхВниз   Решение


Докажите, что если у выпуклого многоугольника все углы равны, то по крайней мере у двух его сторон длины не превосходят длин соседних с ними сторон.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 [Всего задач: 24]      



Задача 85241

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Тождественные преобразования (тригонометрия) ]
[ Правильные многоугольники ]
[ Вспомогательные проекции ]
[ Геометрические интерпретации в алгебре ]
[ Комплексные числа помогают решить задачу ]
Сложность: 4-
Классы: 9,10,11

Докажите следующие равенства:

а)   


б)   


в)   

Прислать комментарий     Решение

Задача 109624

Темы:   [ Целочисленные решетки (прочее) ]
[ Процессы и операции ]
[ Ортогональная (прямоугольная) проекция ]
[ Вспомогательные проекции ]
Сложность: 4
Классы: 8,9,10

Автор: Садыков Р.

На координатной плоскости расположены четыре фишки, центры которых имеют целочисленные координаты. Разрешается сдвинуть любую фишку на вектор, соединяющий центры любых двух из остальных фишек. Докажите, что несколькими такими перемещениями можно совместить любые две наперед заданные фишки.
Прислать комментарий     Решение


Задача 107844

Темы:   [ Покрытия ]
[ Принцип Дирихле (углы и длины) ]
[ Векторы помогают решить задачу ]
[ Вспомогательные проекции ]
[ Геометрические неравенства (прочее) ]
[ Параллельный перенос (прочее) ]
Сложность: 5+
Классы: 9,10,11

На плоскости дано конечное число полос, сумма ширин которых равна 100, и круг радиуса 1.
Докажите, что каждую из полос можно параллельно перенести так, чтобы все они вместе покрыли круг.

Прислать комментарий     Решение

Задача 109604

Темы:   [ Выпуклые многоугольники ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Векторы помогают решить задачу ]
[ Вспомогательные проекции ]
[ Разбиения на пары и группы; биекции ]
Сложность: 6
Классы: 9,10,11

Докажите, что если у выпуклого многоугольника все углы равны, то по крайней мере у двух его сторон длины не превосходят длин соседних с ними сторон.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .