ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В клетках таблицы 2000×2000 записаны числа 1 и –1. Известно, что сумма всех чисел в таблице неотрицательна. Докажите, что найдутся 1000 строк и 1000 столбцов таблицы, для которых сумма чисел, записанных в клетках, находящихся на их пересечении, не меньше 1000.

   Решение

Задачи

Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 488]      



Задача 64926

Темы:   [ Системы точек ]
[ Разбиения на пары и группы; биекции ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Проективная геометрия (прочее) ]
Сложность: 4+
Классы: 10,11

На плоскости даны n  (n > 2)  точек, никакие три из которых не лежат на одной прямой. Сколькими различными способами это множество точек можно разбить на два непустых подмножества так, чтобы выпуклые оболочки этих подмножеств не пересекались?

Прислать комментарий     Решение

Задача 73664

Темы:   [ Уравнения в целых числах ]
[ Алгоритм Евклида ]
[ Принцип крайнего ]
Сложность: 4+
Классы: 8,9,10

  а) В ведро налили 12 литров молока. Пользуясь лишь сосудами в 5 и 7 л, разделите молоко на две равные части.
  б) Решите общую задачу: при каких a и b можно разделить пополам  a + b  литров молока, пользуясь лишь сосудами в a литров, b литров и  a + b  литров?
За одно переливание из одного сосуда в другой можно вылить всё, что там есть, или долить второй сосуд до верха.

Прислать комментарий     Решение

Задача 73771

Темы:   [ Десятичная система счисления ]
[ Шахматные доски и шахматные фигуры ]
[ Принцип крайнего (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Геометрические интерпретации в алгебре ]
Сложность: 4+
Классы: 8,9,10

а) Имеется 51 двузначное число. Докажите, что из этих чисел можно выбрать по крайней мере 6 чисел так, чтобы никакие два из выбранных чисел ни в одном разряде не имели одинаковой цифры.

б) Даны натуральные числа k и n, причём  1 < k < n.  Для какого наименьшего m верно следующее утверждение: при любой расстановке m ладей на доске размером n×n клеток можно выбрать k ладей из этих m так, чтобы никакие две из этих выбранных ладей не били друг друга?

Прислать комментарий     Решение

Задача 79458

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Индукция (прочее) ]
[ Принцип крайнего (прочее) ]
[ Неравенство Коши ]
Сложность: 4+
Классы: 9,10,11

По кругу расставлено не менее четырёх неотрицательных чисел, в сумме равных единице.
Докажите, что сумма всех попарных произведений соседних чисел не больше ¼.

Прислать комментарий     Решение

Задача 109615

Темы:   [ Числовые таблицы и их свойства ]
[ Разбиения на пары и группы; биекции ]
[ Принцип крайнего (прочее) ]
[ Четность и нечетность ]
Сложность: 4+
Классы: 8,9,10,11

В клетках таблицы 2000×2000 записаны числа 1 и –1. Известно, что сумма всех чисел в таблице неотрицательна. Докажите, что найдутся 1000 строк и 1000 столбцов таблицы, для которых сумма чисел, записанных в клетках, находящихся на их пересечении, не меньше 1000.

Прислать комментарий     Решение

Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 488]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .