ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Биссектрисы BB1 и CC1 треугольника ABC пересекаются в точке I. Прямая B1C1 пересекает описанную окружность треугольника ABC в точках M и N.
Докажите, что радиус описанной окружности треугольника MIN вдвое больше радиуса описанной окружности треугольника ABC.

   Решение

Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 125]      



Задача 116952

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Общая касательная к двум окружностям ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Вспомогательные подобные треугольники ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Три попарно непересекающиеся окружности ωx, ωy, ωz радиусов rx, ry, rz лежат по одну сторону от прямой t и касаются её в точках X, Y, Z соответственно. Известно, что Y – середина отрезка XZ,  rx = rz = r,  а  ry > r.  Пусть p – одна из общих внутренних касательных к окружностям ωx и ωy, а q – одна из общих внутренних касательных к окружностям ωy и ωz. В пересечении прямых p, q, t образовался неравнобедренный треугольник. Докажите, что радиус его вписанной окружности равен r.

Прислать комментарий     Решение

Задача 57525

Темы:   [ Экстремальные свойства треугольника (прочее) ]
[ Векторы помогают решить задачу ]
[ Скалярное произведение. Соотношения ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4
Классы: 8,9,10

Среди всех треугольников, вписанных в данную окружность, найдите тот, у которого максимальна сумма квадратов длин сторон.
Прислать комментарий     Решение


Задача 108170

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Формулы для площади треугольника ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 4
Классы: 8,9

На сторонах AB , BC и AC треугольника ABC взяты точки C' , A' и B' соответственно. Докажите, что площадь треугольника A'B'C' равна

,

где R – радиус описанной окружности треугольника ABC .
Прислать комментарий     Решение

Задача 109841

Темы:   [ Биссектриса делит дугу пополам ]
[ Вспомогательная окружность ]
[ Вписанные и описанные окружности ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Средняя линия треугольника ]
[ Вспомогательные равные треугольники ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 4
Классы: 9,10,11

Биссектрисы BB1 и CC1 треугольника ABC пересекаются в точке I. Прямая B1C1 пересекает описанную окружность треугольника ABC в точках M и N.
Докажите, что радиус описанной окружности треугольника MIN вдвое больше радиуса описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 116945

Темы:   [ Общая касательная к двум окружностям ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Вневписанные окружности ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Радикальная ось ]
Сложность: 4
Классы: 8,9,10

К двум непересекающимся окружностям ω1 и ω2 проведены три общие касательные – две внешние, a и b, и одна внутренняя, c. Прямые a, b и c касаются окружности ω1 в точках A1, B1 и C1 соответственно, а окружности ω2 – в точках A2, B2 и C2 соответственно. Докажите, что отношение площадей треугольников A1B1C1 и A2B2C2 равно отношению радиусов окружностей ω1 и ω2.

Прислать комментарий     Решение

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 125]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .